一、numpy模块的综合使用方法
import numpy as np
array = np.array([[1,2,3],[2,3,4]],np.uint8)
print(array)
print(array.shape)
print(array.ndim)
print(array.size)
a = np.array([2,3,4],dtype = np.int64)
a1 = np.array([2,3,4],dtype = np.int16)
b = np.array([2,3,4],dtype = np.int32)
c = np.array([2,3,4],dtype = np.float64)
d = np.array([2,3,4],dtype = np.float32)
print(a)
print(a1)
print(b)
print(c)
print(d)
a = np.array([[1,2,3],[2,3,4]])
print(a)
a = np.zeros((3,4),dtype = np.int16)
b = np.ones((3,4),dtype = np.int16)
c = np.empty((3,4))
d = np.arange(10,20,2)
e = np.arange(12).reshape((3,4))
f = np.linspace(1,10,6).reshape(2,3)
print(a)
print(b)
print(c)
print(d)
print(e)
print(f)
a = np.array([10,20,30,40])
b= np.arange(4)
c = a-b
d = a+b
e = 10 * np.sin(a)
print(a,b)
print(c)
print(d)
print(b**2)
print(e)
print(b)
print(b<3)
print(b==3)
a = np.array([[1,1],[2,3]],np.int16)
b = np.arange(4).reshape((2,2))
c = a*b
d = np.dot(a,b)
e = a.dot(b)
print(c)
print(d)
print(e)
a = np.random.random((2,4))
print(a)
print(np.sum(a,axis=1))
print(np.min(a,axis=0))
print(np.max(a,axis=1))
A = np.arange(2,14).reshape((3,4))
print(A)
print(A.argmin())
print(np.argmin(A))
print(A.argmax())
print(np.argmax(A))
print(np.mean(A,axis = 0))
print(np.average(A,axis = 1))
print(A.mean())
print(np.median(A))
print(np.cumsum(A))
print(np.diff(A))
print(np.nonzero(A))
A = np.arange(14,2,-1).reshape(3,4)
print(np.sort(A))
print(np.transpose(A))
print(A.T)
print(A.dot(A.T))
print(np.clip(A,5,9))
A = np.arange(3,15)
print(A)
print(A[3])
A = np.arange(3,15).reshape(3,4)
print(A)print(A[2])
print(A[1][1])
print(A[1,1])
print(A[2,:])
print(A[:,2])
print(A)
print(A[1,1:3])
for row in A:print(row)
for column in A.T:print(column)
print(A)
print(A.flat)
print(A.flatten())
for item in A.flat:print(item)
A = np.array([1,1,1])
print(A.T)
print(A.shape)
A = np.matrix([1,1,1])
B = np.matrix([2,2,2])
print(A.shape)
print(B.shape)
print(A.T)
print(B.T)
print(np.vstack((A,B)))
print(np.hstack((A,B)) )
print(np.vstack((A,B,B,A)))
print(np.vstack((A,B,B,A)).shape)
print(np.hstack((A,B,B,A)))
print(np.hstack((A,B,B,A)).shape)
print(np.concatenate((A,B,B,A),axis=0))
print(np.concatenate((A,B,B,A),axis=1))
A = np.arange(12).reshape((3,4))
print(A)
print(np.split(A,2,axis = 1))
print(np.split(A,3,axis = 0))
print(np.array_split(A,3,axis = 1))
print(np.vsplit(A,3))
print(np.hsplit(A,2))
A = np.array([[1,2,3],[4,5,6]])
B = A
C = B
A[0][1] = 9
print(A)
print(B)
print(C)
A[1,1:3] = [22,33]
print(A)
print(B)
print(C)
D = A.copy()
A[1][2] = 3
print(A)
print(D)