欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 科技 > 能源 > Hadoop架构与核心模块解析

Hadoop架构与核心模块解析

2025/5/28 18:44:24 来源:https://blog.csdn.net/winterPassing/article/details/148225116  浏览:    关键词:Hadoop架构与核心模块解析

Hadoop的架构是一个分布式系统,旨在高效存储和处理大规模数据。其核心设计包括分层组件,各司其职,协同工作。以下是Hadoop架构的详细解析:


1. 核心模块

Hadoop主要由三个核心模块构成:

  • HDFS(Hadoop Distributed File System):分布式文件系统,负责数据存储。
  • YARN(Yet Another Resource Negotiator):资源管理和作业调度框架。
  • MapReduce:分布式计算模型(在YARN上运行)。

2. HDFS架构

设计目标:高容错性、高吞吐量、支持海量数据存储。

关键组件
  • NameNode(主节点)

    • 管理文件系统元数据(目录结构、文件分块信息、块位置等)。
    • 协调客户端对文件的读写操作。
    • 单点故障问题通过**HA(高可用)**方案解决(如双NameNode + ZooKeeper)。
  • DataNode(从节点)

    • 存储实际数据块(默认每个块128MB/256MB,3副本)。
    • 定期向NameNode发送心跳和块报告。
  • Secondary NameNode

    • 辅助合并NameNode的编辑日志(fsimage + edits),非热备,需与HA区分。
数据读写流程
  • 写入:客户端切分文件→NameNode分配DataNode→流水线写入多副本。
  • 读取:客户端从NameNode获取块位置→直接联系DataNode读取。

3. YARN架构

设计目标:解耦资源管理与作业调度,支持多计算框架(如MapReduce、Spark)。

关键组件
  • ResourceManager(RM)

    • 全局资源调度器,管理集群资源(CPU、内存)。
    • 包含Scheduler(纯调度,不监控任务)和ApplicationsManager(接受作业提交)。
  • NodeManager(NM)

    • 单节点资源代理,监控资源使用并汇报给RM。
    • 启动和管理容器(Container)执行任务。
  • ApplicationMaster(AM)

    • 每个应用(如MapReduce作业)专属,向RM申请资源,协调任务执行。
    • 处理任务失败、重试等容错逻辑。
作业执行流程
  1. 客户端提交作业到RM。
  2. RM分配容器启动AM。
  3. AM向RM申请资源,NM启动容器运行任务(Map/Reduce)。
  4. AM监控任务状态,直到作业完成。

4. MapReduce计算模型

  • Map阶段:分布式处理输入数据,生成键值对。
  • Shuffle & Sort:按Key排序并分发到Reduce节点。
  • Reduce阶段:聚合中间结果,生成最终输出。

5. 辅助组件与生态系统

  • Hadoop Common:提供基础库和工具(如RPC、序列化)。
  • 高可用与联邦
    • HDFS HA:双NameNode + ZooKeeper实现故障切换。
    • HDFS Federation:多个NameNode分治命名空间,扩展元数据容量。
  • 生态系统工具
    • ZooKeeper:协调分布式服务(如HA)。
    • HBaseHiveSpark等:基于Hadoop构建的数据处理工具。

6. 核心特性

  • 容错性:数据多副本存储、任务自动重试。
  • 可扩展性:支持数千节点集群。
  • 高吞吐:数据本地化计算(移动计算而非数据)。

架构图示

+-------------------+     +-------------------+
|     Client        |     |     Client        |
+-------------------+     +-------------------+|                       || Submit Job            | Read/Writev                       v
+-------------------+     +-------------------+
|   ResourceManager |<--->|     NameNode      |
+-------------------+     +-------------------+|                       || Allocates Resources   | Manages Metadatav                       v
+-------------------+     +-------------------+
|  NodeManager      |     |    DataNode       |
|  (Containers)     |     |  (Data Blocks)    |
+-------------------+     +-------------------+|| Runsv
+-------------------+
| ApplicationMaster  |
| (MapReduce/Spark)  |
+-------------------+

总结

Hadoop通过分层架构实现了存储(HDFS)、资源管理(YARN)与计算(MapReduce等)的分离,兼具高扩展性和容错性。其生态系统丰富,支持多样化的大数据处理场景,成为大数据领域的基石技术。

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

热搜词