欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 科技 > 能源 > ES的预置分词器

ES的预置分词器

2025/11/20 10:26:33 来源:https://blog.csdn.net/ttyy1112/article/details/146156612  浏览:    关键词:ES的预置分词器

Elasticsearch(简称 ES)提供了多种预置的分词器(Analyzer),用于对文本进行分词处理。分词器通常由字符过滤器(Character Filters)、分词器(Tokenizer)和词元过滤器(Token Filters)组成。以下是一些常用的预置分词器及其示例:


1. Standard Analyzer(标准分词器)

  • 默认分词器,适用于大多数语言。
  • 处理步骤:
    1. 使用标准分词器(Standard Tokenizer)按空格和标点符号分词。
    2. 应用小写过滤器(Lowercase Token Filter)将词元转换为小写。
  • 示例
    POST _analyze
    {"analyzer": "standard","text": "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone."
    }
    
    输出
    ["the", "2", "quick", "brown", "foxes", "jumped", "over", "the", "lazy", "dog's", "bone"]
    

2. Simple Analyzer(简单分词器)

  • 按非字母字符(如数字、标点符号)分词,并将词元转换为小写。
  • 示例
    POST _analyze
    {"analyzer": "simple","text": "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone."
    }
    
    输出
    ["the", "quick", "brown", "foxes", "jumped", "over", "the", "lazy", "dog", "s", "bone"]
    

3. Whitespace Analyzer(空格分词器)

  • 仅按空格分词,不转换大小写,不处理标点符号。
  • 示例
    POST _analyze
    {"analyzer": "whitespace","text": "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone."
    }
    
    输出
    ["The", "2", "QUICK", "Brown-Foxes", "jumped", "over", "the", "lazy", "dog's", "bone."]
    

4. Keyword Analyzer(关键词分词器)

  • 将整个文本作为一个单独的词元,不做任何分词处理。
  • 示例
    POST _analyze
    {"analyzer": "keyword","text": "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone."
    }
    
    输出
    ["The 2 QUICK Brown-Foxes jumped over the lazy dog's bone."]
    

5. Stop Analyzer(停用词分词器)

  • 类似于简单分词器,但会过滤掉常见的停用词(如 “the”, “and”, “a” 等)。
  • 示例
    POST _analyze
    {"analyzer": "stop","text": "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone."
    }
    
    输出
    ["quick", "brown", "foxes", "jumped", "over", "lazy", "dog", "s", "bone"]
    

6. Pattern Analyzer(正则分词器)

  • 使用正则表达式定义分词规则。
  • 示例
    POST _analyze
    {"analyzer": "pattern","text": "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone."
    }
    
    默认按非字母字符分词,并转换为小写:
    ["the", "2", "quick", "brown", "foxes", "jumped", "over", "the", "lazy", "dog", "s", "bone"]
    

7. Language Analyzer(语言分词器)

  • 针对特定语言优化,支持多种语言(如英语、中文、法语等)。
  • 示例(英语)
    POST _analyze
    {"analyzer": "english","text": "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone."
    }
    
    输出
    ["2", "quick", "brown", "fox", "jump", "over", "lazi", "dog", "bone"]
    

8. ICU Analyzer(国际化分词器)

  • 基于 ICU(International Components for Unicode)库,支持多语言分词。
  • 示例
    POST _analyze
    {"analyzer": "icu_analyzer","text": "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone."
    }
    
    输出
    ["the", "2", "quick", "brown", "foxes", "jumped", "over", "the", "lazy", "dog's", "bone"]
    

9. Fingerprint Analyzer(指纹分词器)

  • 对文本进行分词、去重、排序,并生成唯一的“指纹”。
  • 示例
    POST _analyze
    {"analyzer": "fingerprint","text": "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone."
    }
    
    输出
    ["2", "bone", "brown", "dog", "foxes", "jumped", "lazy", "over", "quick", "the"]
    

总结

Elasticsearch 的预置分词器适用于不同的场景,开发者可以根据需求选择合适的分析器,或者自定义分词器以满足特定需求。

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

热搜词