欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 房产 > 家装 > 神经网络在多分类问题中的应用

神经网络在多分类问题中的应用

2025/9/21 1:31:49 来源:https://blog.csdn.net/weixin_47570444/article/details/142630312  浏览:    关键词:神经网络在多分类问题中的应用

作者简介:热爱数据分析,学习Python、Stata、SPSS等统计语言的小高同学~
个人主页:小高要坚强的博客
当前专栏:Python之机器学习
本文内容:神经网络在多分类问题中的应用
作者“三要”格言:要坚强、要努力、要学习


目录

1. 引言

2.数据构造

3.划分数据集

4.神经网络实现多分类

4.1 训练与验证模型

5.模型保存与加载

6.最终评估模型

7.结论


神经网络在分类任务中的应用越来越广泛,尤其是在图像识别、自然语言处理等领域。本文将介绍如何使用PyTorch构建一个简单的神经网络来处理多分类问题。我们将通过一个实战案例,展示数据构造、模型训练、模型保存与加载、以及评估结果的整个过程。

1. 引言

多分类问题是机器学习中常见的一种任务,其目标是将样本分配到多个类别中的一个。与二分类问题相比,多分类问题需要更加复杂的模型和损失函数。在本案例中,我们将使用合成数据集来演示多分类神经网络的构建和训练。

2.数据构造

我们首先创建一个合成数据集,包含三个类别的数据点。以下是构造数据的代码:

import torch
import matplotlib.pyplot as plt
import osos.environ['KMP_DUPLICATE_LIB_OK'] = 'True'  # 防止某些版本的Jupyter内核崩溃# 数据构造
cluster = torch.ones(500, 2)  # 创建一个500行2列的张量
data0 = torch.normal(4 * cluster, 2)  # 类别0的数据,均值为4,标准差为2
data1 = torch.normal(-4 * cluster, 1)  # 类别1的数据,均值为-4,标准差为1
data2 = torch.normal(-8 * cluster, 1)  # 类别2的数据,均值为-8,标准差为1label0 = torch.zeros(500)  # 类别0的标签
label1 = torch.ones(500)   # 类别1的标签
label2 = label1 * 2        # 类别2的标签# 合并数据和标签
X = torch.cat((data0, data1, data2)).type(torch.FloatTensor)  # 合并数据点
y = to

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

热搜词