欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 科技 > IT业 > 李宏毅机器学习2023HW12—Reinforcement Learning强化学习

李宏毅机器学习2023HW12—Reinforcement Learning强化学习

2025/6/18 22:10:59 来源:https://blog.csdn.net/qq_42875127/article/details/142412488  浏览:    关键词:李宏毅机器学习2023HW12—Reinforcement Learning强化学习

文章目录

  • Task
  • Baseline
    • Simple
    • Medium Baseline—Policy Gradient
    • Strong Baseline——Actor-Critic
    • Boss Baseline—Mask

Task

实现深度强化学习方法:

  • Policy Gradient
  • Actor-Critic

环境:月球着陆器

Baseline

Simple

定义优势函数(Advantage function)为执行完action之后直到结束每一步的reward累加,即:
A 1 = R 1 = r 1 + r 2 + . . . . + r T , A 2 = R 2 = r 2 + r 3 + . . . + r T , . . . A T = R T = r T A_1=R_1=r_1+r_2+....+r_T,\\ A_2=R_2=r_2+r_3+...+r_T,\\ ...\\ A_T=R_T=r_T A1=R1=r1+r2+....+rT,A2=R2=r2+r3+...+rT,...AT=RT=rT
其中, R R R为动作状态值函数, r i r_i ri为执行完动作 a i a_i ai得到的reward

for episode in range(EPISODE_PER_BATCH):state = env.reset()total_reward, total_step = 0, 0seq_rewards = []while True:action, log_prob = agent.sample(state) # at, log(at|st)next_state, reward, done, _ = env.step(action)log_probs.append(log_prob) # [log(a1|s1), log(a2|s2), ...., log(at|st)]# seq_rewards.append(reward)state = next_statetotal_reward += rewardtotal_step += 1rewards.append(reward) # change hereif done:final_rewards.append(reward)total_rewards.append(total_reward)break

Medium Baseline—Policy Gradient

第二个版本的cumulated reward,把离a1比较近的的reward给比较大的权重,比较远的给比较小的权重,如下:
A 1 = R 1 = r 1 + γ r 2 + . . . . + γ T − 1 r T , A 2 = R 2 = r 2 + γ r 3 + . . . + γ T − 2 r T , . . . A T = R T = r T A_1=R_1=r_1+\gamma r_2+....+\gamma ^{T-1} r_T,\\ A_2=R_2=r_2+\gamma r_3+...+\gamma ^{T-2} r_T,\\ ...\\ A_T=R_T=r_T A1=R1=r1+γr2+....+γT1rT,A2=R2=r2+γr3+...+γT2rT,...AT=RT=rT
在这里插入图片描述

# Take a state input and generate a probability distribution of an action through a series of Fully Connected Layers
class PolicyGradientNetwork(nn.Module):def __init__(self):super().__init__()self.fc1 = nn.Linear(8, 16)self.fc2 = nn.Linear(16, 16)self.fc3 = nn.Linear(16, 4)def forward(self, state):hid = torch.tanh(self.fc1(state))hid = torch.tanh(hid)return F.softmax(self.fc3(hid), dim=-1)
      while True:action, log_prob = agent.sample(state) # at, log(at|st)next_state, reward, done, _ = env.step(action)log_probs.append(log_prob) # [log(a1|s1), log(a2|s2), ...., log(at|st)]seq_rewards.append(reward) # r1, r2, ...., rtstate = next_statetotal_reward += rewardtotal_step += 1 # total_step in each episode is different# rewards.append(reward) # change here# ! IMPORTANT !# Current reward implementation: immediate reward,  given action_list : a1, a2, a3 ......#                                                         rewards :     r1, r2 ,r3 ......# medium:change "rewards" to accumulative decaying reward, given action_list : a1,                           a2,                           a3, ......#                                                           rewards :           r1+0.99*r2+0.99^2*r3+......, r2+0.99*r3+0.99^2*r4+...... ,  r3+0.99*r4+0.99^2*r5+ ......if done: # done is return by environment, true means current episode is donefinal_rewards.append(reward) # final step rewardtotal_rewards.append(total_reward) # total reward of this episode# calculate accumulative decaying rewarddiscounted_rewards = []R = 0for r in reversed(seq_rewards):R = r + rate * Rdiscounted_rewards.insert(0, R)rewards.extend(discounted_rewards)break

Strong Baseline——Actor-Critic

在这里插入图片描述Actor-Critic 算法中,ActorCritic 的损失函数主要基于策略梯度方法(用于更新 Actor 网络)以及价值函数(用于更新 Critic 网络)。这两部分的损失分别由策略的 Advantage 估计和状态价值的误差构成。

Actor 网络的目标是通过 策略梯度(Policy Gradient) 方法,最大化预期的累计奖励 $ \mathbb{E} [R] $。为此,损失函数通常为负的 log 概率乘以 Advantage(优势函数),该优势函数描述了当前策略执行动作的好坏程度。
L Actor = − E π [ log ⁡ ( π ( a ∣ s ) ) ⋅ A ( s , a ) ] L_{\text{Actor}} = -\mathbb{E}_{\pi} [\log(\pi(a|s)) \cdot A(s, a)] LActor=Eπ[log(π(as))A(s,a)]

其中:

  • log ⁡ ( π ( a ∣ s ) ) \log(\pi(a|s)) log(π(as)) :是状态 ( s ) 下选择动作 ( a ) 的 log 概率。
  • $ A(s, a) :是 ∗ ∗ A d v a n t a g e ∗ ∗ ,代表实际收益与 C r i t i c 估计的差距,定义为: :是 **Advantage**,代表实际收益与 Critic 估计的差距,定义为: :是Advantage,代表实际收益与Critic估计的差距,定义为:A(s, a) = r + \gamma V(s)_{t+1} - V(s)_t$
    其中:
    • r r r :当前动作的即时奖励。
    • $\gamma $:折扣因子,用于考虑未来奖励的权重。
    • V ( s ) t + 1 V(s)_{t+1} V(s)t+1:下一个状态的价值估计。
    • $V(s)_t $:当前状态的价值估计。

因此,Actor 损失函数的整体公式为:
L Actor = − ∑ i = 1 T log ⁡ ( π ( a ∣ s ) ) ⋅ A ( s , a ) = − ∑ i = 1 T log ⁡ ( π ( a ∣ s ) ) ⋅ ( r + γ V ( s ′ ) − V ( s ) ) L_{\text{Actor}} =-\sum{ ^T _{i=1}} \log(\pi(a|s)) \cdot A(s,a)= -\sum { ^T _{i=1}}\log(\pi(a|s)) \cdot (r + \gamma V(s') - V(s)) LActor=i=1Tlog(π(as))A(s,a)=i=1Tlog(π(as))(r+γV(s)V(s))

2. Critic 损失公式

Critic 网络的目标是尽可能精确地估计状态的价值 ($ V(s) $),所以我们使用 价值误差 作为 Critic 损失。常用的损失函数是 均方误差(Mean Squared Error, MSE) 或者 平滑 L1 损失

Critic 的损失函数可以写为:
L Critic = E [ ( V ( s ) t − ( r + γ V ( s ) t + 1 ) ) 2 ] L_{\text{Critic}} = \mathbb{E} \left[ \left( V(s)_t - \left( r + \gamma V(s)_{t+1} \right) \right)^2 \right] LCritic=E[(V(s)t(r+γV(s)t+1))2]

也就是说,Critic 通过最小化 ( V ( s ) t V(s)_t V(s)t) 和 ( r + γ V ( s ) t + 1 r + \gamma V(s)_{t+1} r+γV(s)t+1 ) 之间的误差,来提高状态价值的估计。

在使用 平滑 L1 损失 的情况下,公式为: L Critic = smooth_l1_loss ( V ( s ) t , r + γ V ( s ) t + 1 ) L_{\text{Critic}} = \text{smooth\_l1\_loss}(V(s)_t, r + \gamma V(s)_{t+1}) LCritic=smooth_l1_loss(V(s)t,r+γV(s)t+1).平滑 L1 损失 比均方误差对异常值更具鲁棒性。

from torch.optim.lr_scheduler import StepLR
class ActorCritic(nn.Module):def __init__(self):super().__init__()self.fc = nn.Sequential(nn.Linear(8, 16),nn.Tanh(),nn.Linear(16, 16),nn.Tanh())self.actor = nn.Linear(16, 4)self.critic = nn.Linear(16, 1)self.values = []self.optimizer = optim.SGD(self.parameters(), lr=0.001)def forward(self, state):hid = self.fc(state)self.values.append(self.critic(hid).squeeze(-1))return F.softmax(self.actor(hid), dim=-1)def learn(self, log_probs, rewards):values = torch.stack(self.values)loss = (-log_probs * (rewards - values.detach())).sum() + F.smooth_l1_loss(values, rewards)self.optimizer.zero_grad()loss.backward()self.optimizer.step()self.values = []def sample(self, state):action_prob = self(torch.FloatTensor(state))action_dist = Categorical(action_prob)action = action_dist.sample()log_prob = action_dist.log_prob(action)return action.item(), log_prob

Boss Baseline—Mask

Mask 蒙版(Mask) 和 Rate(折扣因子) 解释**

  • Mask

mask 是一个 蒙版向量,用于过滤掉无效的或不需要考虑的状态值或奖励。这通常在处理 序列数据 或者 部分状态无效的任务 时很有用。例如,在某些环境中,某些时间步的奖励可能不可用,或这些时间步不需要计入学习。

通过 mask,我们可以有选择性地忽略某些状态或动作:
A ( s , a ) = r + γ ⋅ mask ⋅ V ( s ) t + 1 − V ( s ) + t A(s, a) = r + \gamma \cdot \text{mask} \cdot V(s)_{t+1} - V(s)+t A(s,a)=r+γmaskV(s)t+1V(s)+t

  • Rate (折扣因子 ( γ \gamma γ ))

rate 也就是折扣因子 ( γ \gamma γ ),用于对未来奖励进行折现。它的作用是 平衡即时奖励与长期奖励。折扣因子 ( γ \gamma γ ) 的取值范围通常在 ( $[0, 1] $),当 ( γ = 0 \gamma = 0 γ=0 ) 时,表示完全只关注即时奖励;当 ($ \gamma \to 1 $) 时,表示对长期奖励的重视程度增加。

因此,完整的 Advantage 函数(带有蒙版和折扣因子的形式)是:
A ( s , a ) = r + γ ⋅ mask ⋅ V ( s ) t + 1 − V ( s ) t A(s, a) = r + \gamma \cdot \text{mask} \cdot V(s)_{t+1} - V(s)_t A(s,a)=r+γmaskV(s)t+1V(s)t

完整的损失函数公式()

  1. Actor 损失公式:
    L Actor = − ∑ i = 1 T log ⁡ ( π ( a ∣ s ) ) ⋅ ( r + γ ⋅ mask ⋅ V ( s ) t + 1 − V ( s ) t ) L_{\text{Actor}} = -\sum{ ^T _{i=1}} \log(\pi(a|s)) \cdot \left( r + \gamma \cdot \text{mask} \cdot V(s)_{t+1} - V(s)_t \right) LActor=i=1Tlog(π(as))(r+γmaskV(s)t+1V(s)t)

  2. Critic 损失公式:
    L Critic = smooth_l1_loss ( V ( s ) t , r + γ ⋅ mask ⋅ V ( s ) t + 1 ) L_{\text{Critic}} = \text{smooth\_l1\_loss}\left( V(s)_t, r + \gamma \cdot \text{mask} \cdot V(s)_{t+1} \right) LCritic=smooth_l1_loss(V(s)t,r+γmaskV(s)t+1)

from torch.optim.lr_scheduler import StepLR
class ActorCritic(nn.Module):def __init__(self):super().__init__()self.fc = nn.Sequential(nn.Linear(8, 16),nn.Tanh(),nn.Linear(16, 16),nn.Tanh())self.actor = nn.Linear(16, 4)self.critic = nn.Linear(16, 1)self.values = []self.optimizer = optim.SGD(self.parameters(), lr=0.001)self.scheduler = optim.lr_scheduler.CyclicLR(self.optimizer, base_lr=2e-4, max_lr=2e-3, step_size_up=10, mode='triangular2')def forward(self, state):hid = self.fc(state)self.values.append(self.critic(hid).squeeze(-1))return F.softmax(self.actor(hid), dim=-1)def learn(self, log_probs, rewards, mask, rate):values = torch.stack(self.values)advantage = rewards + rate* mask * torch.cat([values[1:], torch.zeros(1)]) - valuesloss = (-log_probs * (advantage.detach())).sum() + \F.smooth_l1_loss(advantage, torch.zeros(len(advantage)))self.optimizer.zero_grad()loss.backward()self.optimizer.step()self.scheduler.step()self.values = []def sample(self, state):action_prob = self(torch.FloatTensor(state))action_dist = Categorical(action_prob)action = action_dist.sample()log_prob = action_dist.log_prob(action)return action.item(), log_prob
while True:action, log_prob = agent.sample(state) # at, log(at|st)next_state, reward, done, _ = env.step(action)log_probs.append(log_prob) # [log(a1|s1), log(a2|s2), ...., log(at|st)]seq_rewards.append(reward)state = next_statetotal_reward += rewardtotal_step += 1if done:final_rewards.append(reward)total_rewards.append(total_reward)rewards += seq_rewardsmask += [1]*len(seq_rewards)mask[-1] = 0break

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

热搜词