欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 科技 > 名人名企 > C++ SIMD性能优化

C++ SIMD性能优化

2025/12/14 22:36:52 来源:https://blog.csdn.net/qq_30220519/article/details/139741983  浏览:    关键词:C++ SIMD性能优化
// 使用SIMD指令优化的向量加法
//<mmintrin.h> MMX
//<xmmintrin.h>	SSE
//<emmintrin.h>	SSE2
//<pmmintrin.h>	SSE3
//<tmmintrin.h>	SSSE3
//<smmintrin.h>	SSE4.1
//<nmmintrin.h> SSE4.2
//<wmmintrin.h> AES
//<immintrin.h>	AVX, AVX2, FMA, BMI, POPCNT, AVX512
//<x86intrin.h>	Auto(GCC)
//<intrin.h> Auto(MSVC)
#include <emmintrin.h> // 包含SSE2指令集
#include <valarray>
#include <iostream>
#include <chrono>
#include <vector>__m128i vector_add(__m128i a, __m128i b) {return _mm_add_epi32(a, b);
}void add_vectors(int* a, int* b, int* c, int size) {for (int i = 0; i < size; i += 4) {__m128i va = _mm_load_si128((__m128i*)(a + i));__m128i vb = _mm_load_si128((__m128i*)(b + i));__m128i vc = _mm_add_epi32(va, vb);_mm_store_si128((__m128i*)(c + i), vc);}
}int test() {std::valarray<float> a = { 1.0, 2.0, 3.0, 4.0 };std::valarray<float> b = { 5.0, 6.0, 7.0, 8.0 };std::valarray<float> c = a + b;for (auto& element : c) {std::cout << element << " ";}std::cout << std::endl;// 数据量小std::vector<int> a1(10);std::vector<int> b1(10);for (size_t i = 0; i < 10; i++){a1[i] = i;b1[i] = i + 1;}std::vector<int> c1(10);std::chrono::steady_clock::time_point t1 = std::chrono::steady_clock::now();add_vectors(&a1[0], &b1[0], &c1[0], 4);std::chrono::steady_clock::time_point t2 = std::chrono::steady_clock::now();std::cout << "simd cost " << (t2 - t1).count() << std::endl;std::chrono::steady_clock::time_point t3 = std::chrono::steady_clock::now();for (size_t i = 0; i < c1.size(); ++i)c1.at(i) = a1.at(i) + b1.at(i);std::chrono::steady_clock::time_point t4 = std::chrono::steady_clock::now();std::cout << "cost " << (t4 - t3).count() << std::endl;// 数据量大std::vector<int> a2(10000);std::vector<int> b2(10000);for (size_t i = 0; i < 10000; i++){a2[i] = i;b2[i] = i + 1;}std::vector<int> c2(10000);t1 = std::chrono::steady_clock::now();add_vectors(&a2[0], &b2[0], &c2[0], 4);t2 = std::chrono::steady_clock::now();std::cout << "simd cost " << (t2 - t1).count() << std::endl;t3 = std::chrono::steady_clock::now();for (size_t i = 0; i < c2.size(); ++i)c2.at(i) = a2.at(i) + b2.at(i);t4 = std::chrono::steady_clock::now();std::cout << "cost " << (t4 - t3).count() << std::endl;//for (const auto& ele : c1)//    std::cout << ele << " ";return 0;
}

输出

6 8 10 12
simd cost 500
cost 400
simd cost 5700
cost 49200


总结: 数据运算量小无效果,数据运算量大效果提升显著

参考

GitHub - parallel101/simdtutor: x86-64 SIMD矢量优化系列教程

GitHub - google/highway: Performance-portable, length-agnostic SIMD with runtime dispatch


创作不易,小小的支持一下吧!

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

热搜词