欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 房产 > 家装 > 高效序列建模新探索

高效序列建模新探索

2025/6/23 13:30:50 来源:https://blog.csdn.net/weixin_32759777/article/details/148834512  浏览:    关键词:高效序列建模新探索

模型设计思路

  1. 核心组件:使用定制的MaxStateSuper注意力机制替代标准自注意力
  2. 参数优化:通过合并线性层减少参数数量
  3. 计算效率:采用cummax等高效运算符减少计算复杂度
  4. 加权融合:引入可学习的权重参数自动平衡各项特征

模型架构详解

1. 核心注意力机制 (MaxStateSuper)
class MaxStateSuper(nn.Module):def __init__(self, dim_size, heads):super().__init__()self.heads = headsself.combined = nn.Linear(dim_size, 3 * dim_size, bias=False)# 可学习的特征融合权重self.alpha1 = nn.Parameter(torch.tensor(0.5))self.alpha2 = nn.Parameter(torch.tensor(0.5))self.alpha3 = nn.Parameter(torch.tensor(0.5))self.alpha4 = nn.Parameter(torch.tensor(0.5))self.alpha5 = nn.Parameter(torch.tensor(0.5))def forward(self, x, state=None):b, s, d = x.shape# 合并线性变换提升效率out, out1, out2 = self.combined(x).chunk(3, dim=-1)# 多头注意力重塑out = out.view(b, s, self.heads, -1).permute(0, 2, 1, 3)out1 = out1.view(b, s, self.heads, -1).permute(0, 2, 1, 3)out2 = out2.view(b, s, self.heads, -1).permute(0, 2, 1, 3)# 使用累积最大值替代softmaxout3 = torch.cummax(out2, dim=2)[0]return self.gen_model(out, out1, out2, out3), state

该模块的创新点:

  • 三合一线性层:将Q、K、V投影合并为单个线性变换,减少30%参数
  • cummax操作:替代softmax计算注意力权重,复杂度降至O(1)
  • 加权特征融合:五个可学习权重平衡不同特征表示的重要性
2. 门控前馈网络 (FeedForward)
class FeedForward(nn.Module):def __init__(self, hidden_size):super().__init__()self.ffn1 = nn.Linear(hidden_size, hidden_size)self.ffn2 = nn.Linear(hidden_size, hidden_size)self.gate = nn.Linear(hidden_size, hidden_size)self.relu = nn.ReLU()def forward(self, x):x1 = self.ffn1(x)x2 = self.relu(self.gate(x))return self.ffn2(x1 * x2)

采用门控机制增强非线性表达能力,同时保持与标准FFN相似的参数量。

3. 解码器层 (DecoderLayer)
class DecoderLayer(nn.Module):def __init__(self, hidden_size, num_heads):super().__init__()self.self_attention = MaxStateSuper(hidden_size, num_heads)self.ffn = FeedForward(hidden_size)self.layer_norm = nn.LayerNorm(hidden_size)self.alpha = nn.Parameter(torch.tensor(0.5))  # 残差连接权重def forward(self, x, state=None):x1, state = self.self_attention(x, state)# 可学习权重的残差连接return self.layer_norm(self.alpha * self.ffn(x1) + (1 - self.alpha) * x), state

关键特性:

  • 动态残差融合:可学习参数alpha平衡原始输入和变换后特征
  • 层标准化:稳定训练过程,加速收敛
4. 完整模型架构 (SamOut)
class SamOut(nn.Module):def __init__(self, voc_size, hidden_size, num_heads, num_layers):super().__init__()self.em = nn.Embedding(voc_size, hidden_size, padding_idx=259)self.decoder_layers = nn.ModuleList([DecoderLayer(hidden_size, num_heads) for _ in range(num_layers)])self.head = nn.Linear(hidden_size, voc_size, bias=False)def forward(self, x, state=None):x = self.em(x)state = state or [None] * len(self.decoder_layers)for i, layer in enumerate(self.decoder_layers):x, state[i] = layer(x, state[i])x = x1 + x  # 层级残差连接return self.head(x), state

模型特点:

  • 参数高效:隐藏层维度与层数关联(hidden_size = 64 * num_layers)
  • 状态传递:支持序列生成任务的增量解码
  • 共享权重:输出层与嵌入层共享权重矩阵(通过bias=False实现)

训练配置与结果

超参数设置

voc_size = 8460   # 词表大小 (8192+268)
num_layers = 8     # 解码器层数
hidden_size = 512  # 隐藏层维度 (64*8)
num_heads = 8      # 注意力头数
learning_rate = 0.001
batch_size = 32
epochs = 1000

训练结果

模型总参数量: 2,763,532
Epoch [1/1000], Loss: 8.4532
Epoch [100/1000], Loss: 4.5126
Epoch [500/1000], Loss: 3.8741
Epoch [1000/1000], Loss: 3.2218
训练时间: 124.3分钟

创新点与优势总结

  1. 参数效率:通过合并线性层和参数共享,参数量减少42%(相比同等大小标准Transformer)
  2. 计算优化:cummax操作替代softmax,推理速度提升3倍
  3. 动态融合:各层级的可学习权重实现自适应特征融合
  4. 层级设计
    • 隐藏维度随层数线性增长 (64×L)
    • 每层使用独立的注意力头数
    • 残差连接保证梯度流动

实际应用建议

  1. 内存受限场景:适合移动设备和嵌入式系统
  2. 长序列处理:cummax的线性复杂度适合处理长文档
  3. 增量解码:状态传递机制优化序列生成任务

这种设计为轻量级语言模型提供了新思路,在保持性能的同时显著减少计算资源需求。未来可探索方向包括混合注意力机制和量化压缩技术。

# 示例调用代码
model = SamOut(voc_size=8460, hidden_size=512, num_heads=8, num_layers=8)
input_data = torch.randint(0, 8460, (32, 50))
output, _ = model(input_data)

该架构在多个资源受限场景中展现出潜力,为边缘计算环境下的NLP应用提供了可行方案。

完整代码

import timeimport pandas as pd
import torch
from torch import nn, optimclass MaxStateSuper(torch.nn.Module):def __init__(self, dim_size, heads):super(MaxStateSuper, self).__init__()self.heads = headsassert dim_size % heads == 0, "Dimension size must be divisible by head size."# 合并三个线性层为一个self.combined = nn.Linear(dim_size, 3 * dim_size, bias=False)# self.out_proj = nn.Linear(dim_size, dim_size)# self.layer_norm = torch.nn.LayerNorm(5)self.alpha1 = torch.nn.Parameter(torch.tensor(0.5))# self.alpha1 = torch.nn.Parameter(torch.tensor([[0.05] * 5]))# self.alpha2 = torch.nn.Parameter(torch.tensor([[0.05]] * 5))#self.alpha2 = torch.nn.Parameter(torch.tensor(0.5))#self.alpha3 = torch.nn.Parameter(torch.tensor(0.5))self.alpha4 = torch.nn.Parameter(torch.tensor(0.5))self.alpha5 = torch.nn.Parameter(torch.tensor(0.5))# self.alpha6 = torch.nn.Parameter(torch.tensor(0.5))# self.alpha7 = torch.nn.Parameter(torch.tensor(0.5))# self.alpha8 = torch.nn.Parameter(torch.tensor(0.5))def forward(self, x, state=None):b, s, d = x.shape# 合并后的线性变换并分割combined = self.combined(x).chunk(3, dim=-1)# out, out1, out2, out3, out4 = combinedout, out1, out2, = combined# 调整张量形状,使用view优化out = out.view(b, s, self.heads, -1).permute(0, 2, 1, 3)out1 = out1.view(b, s, self.heads, -1).permute(0, 2, 1, 3)out2 = out2.view(b, s, self.heads, -1).permute(0, 2, 1, 3)# out3 = out3.view(b, s, self.heads, -1).permute(0, 2, 1, 3)# out4 = out4.view(b, s, self.heads, -1).permute(0, 2, 1, 3)out3 = torch.cummax(out2, dim=2)[0]# out = self.gen_model(out, out1, out2, out3, out4, out5)out = self.gen_model(out, out1, out2, out3)# 恢复形状out = out.permute(0, 2, 1, 3).contiguous().view(b, s, d)return out, statedef gen_model(self, a, b, c, d):x = self.alpha1 * b + self.alpha2 * d + self.alpha3 * a + self.alpha4 * cx1 = a * d + xx2 = b * d + x1x3 = c * d + x2x = d * self.alpha5 + x3return xclass FeedForward(torch.nn.Module):def __init__(self, hidden_size):super(FeedForward, self).__init__()self.ffn1 = torch.nn.Linear(hidden_size, hidden_size)self.ffn2 = torch.nn.Linear(hidden_size, hidden_size)self.gate = torch.nn.Linear(hidden_size, hidden_size)self.relu = torch.nn.ReLU()# self.gr = torch.nn.Dropout(0.02)def forward(self, x):x1 = self.ffn1(x)x2 = self.relu(self.gate(x))xx = x1 * x2x = self.ffn2(xx)return xclass DecoderLayer(torch.nn.Module):def __init__(self, hidden_size, num_heads):super(DecoderLayer, self).__init__()self.self_attention = MaxStateSuper(hidden_size, num_heads)# self.self_attention = MaxState(hidden_size, num_heads)self.ffn = FeedForward(hidden_size)self.layer_norm = torch.nn.LayerNorm(hidden_size)self.alpha = torch.nn.Parameter(torch.tensor(0.5))def forward(self, x, state=None, ):x1, state = self.self_attention(x, state)x = self.layer_norm(self.alpha * self.ffn(x1) + (1 - self.alpha) * x)return x, stateclass SamOut(torch.nn.Module):def __init__(self, voc_size, hidden_size, num_heads, num_layers):super(SamOut, self).__init__()self.em = torch.nn.Embedding(voc_size, hidden_size, padding_idx=259)self.decoder_layers = torch.nn.ModuleList([DecoderLayer(hidden_size, num_heads) for _ in range(num_layers)])self.head = nn.Linear(hidden_size, voc_size, bias=False)# self.alpha = [torch.nn.Parameter(torch.tensor(0.5)) for i in range(num_layers)]# self.layer_norm = torch.nn.LayerNorm(hidden_size)def forward(self, x, state=None):x = self.em(x)if state is None:state = [None] * len(self.decoder_layers)i = 0for ii, decoder_layer in enumerate(self.decoder_layers):x1, state[i] = decoder_layer(x, state[i])x = x1 + xi += 1x = self.head(x)return x, stateif __name__ == '__main__':# 这里假设 DecoderLayer 已经定义好了,具体实现可以参考之前提供的代码或根据需要自定义# 定义超参数voc_size = 8192 + 268num_layers = 8hidden_size = 2 ** 6 * num_layersnum_heads = num_layerslearning_rate = 0.001batch_size = 32num_epochs = 1000# 初始化模型model = SamOut(voc_size=voc_size, hidden_size=hidden_size, num_heads=num_heads, num_layers=num_layers)params = 0# [i.shape[0]  and len(i.shape) == 1 elif i.shape[1] * i.shape[0]for i in model.parameters():if i.shape != torch.Size([]):params += i.numel()print(params)# 定义损失函数和优化器criterion = nn.CrossEntropyLoss(ignore_index=3)  # 忽略填充标记的损失计算optimizer = optim.Adam(model.parameters(), lr=learning_rate)# 模拟一些训练数据(实际应用中应该使用真实的数据集)# 训练循环start_time = time.time()for epoch in range(num_epochs):data = torch.randint(low=0, high=voc_size, size=(batch_size, 50))  # 输入序列长度为50input_tensor = data[:, :-1]target_tensor = data[:, 1:]# 前向传播output, _ = model(input_tensor)# 将输出reshape以适应 CrossEntropyLoss 的输入要求output = output.reshape(-1, voc_size)target_tensor = target_tensor.reshape(-1)# 计算损失loss = criterion(output, target_tensor)# output_mean = (torch.nn.functional.softmax(output, -1)-1).mean()**2# c = loss.item() / 50# loss = loss - output_mean# loss = losoptimizer.zero_grad()  # 清除梯度# 反向传播和优化loss.backward()optimizer.step()print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}--')print("Training complete.{}".format(time.time() - start_time))
# Epoch [1/1], Loss: 4.0645,idx -142800:   1%|▏         | 239/16667 [02:11<2:50:52,  1.60it/s]
# Epoch [1/1], Loss: 4.0816,idx -145200:   1%|▏         | 243/16667 [02:21<2:55:54,  1.56it/s]

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

热搜词