欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 房产 > 家装 > 常用的多传感器数据融合方法

常用的多传感器数据融合方法

2025/5/23 10:32:09 来源:https://blog.csdn.net/suoxd123/article/details/147570326  浏览:    关键词:常用的多传感器数据融合方法

1. 概述

根据具体需求(实时性、计算资源、噪声特性)选择合适的方法,实际应用中常结合多种方法(如UKF与神经网络结合)。

  • 传统方法 (KF/EKF/UKF/PF)依赖数学模型,适合动态系统;
  • 数据驱动方法 (神经网络)适合复杂非线性问题;
  • 混合方法 (如UKF+神经网络)可结合模型先验与数据驱动优势。
方法适用系统计算复杂度动态适应性噪声要求典型应用
加权平均法静态已知噪声方差温度传感器融合
卡尔曼滤波线性动态中等高斯噪声导航系统
扩展卡尔曼滤波弱非线性中等中等高斯噪声无人机姿态估计
无迹卡尔曼滤波强非线性较高高斯噪声自动驾驶目标跟踪
粒子滤波非线性/非高斯任意分布机器人SLAM
互补滤波静态/动态中等无特殊要求IMU与磁力计融合
协方差交集任意中等</

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

热搜词