欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 文旅 > 艺术 > 深度学习系列75:sql大模型工具vanna

深度学习系列75:sql大模型工具vanna

2026/2/16 0:56:40 来源:https://blog.csdn.net/kittyzc/article/details/145176214  浏览:    关键词:深度学习系列75:sql大模型工具vanna

1. 概述

vanna是一个可以将自然语言转为sql的工具。简单的demo如下:

!pip install vanna
import vanna
from vanna.remote import VannaDefault
vn = VannaDefault(model='chinook', api_key=vanna.get_api_key('my-email@example.com'))
vn.connect_to_sqlite('https://vanna.ai/Chinook.sqlite')
vn.ask("What are the top 10 albums by sales?")

执行下面的代码运行图形界面

from vanna.flask import VannaFlaskApp
VannaFlaskApp(vn).run()

2. 配置

数据库可以是任何数据库,比如mysql如下:

import pandas as pd
import psycopg2def run_sql(sql):conn = psycopg2.connect(host="localhost",database="my_database",user="my_user",password="my_password")return pd.read_sql(sql, conn)vn.run_sql = run_sql
vn.run_sql_is_set = True

向量数据库稍微麻烦一些,目前支持的包括:
参考代码如下:

from vanna.chromadb.chromadb_vector import ChromaDB_VectorStore
class MyVanna(ChromaDB_VectorStore):def __init__(self, config=None):ChromaDB_VectorStore.__init__(self, config=config)vn = MyVanna(config={'path': '/path/to/chromadb'})

3. 训练

训练数据可以是:DDL、documentation、sql以及Question-SQL Pairs

vn.train(ddl="CREATE TABLE my_table (id INT, name TEXT)")
vn.train(documentation="Our business defines XYZ as ABC")
vn.train(sql="SELECT col1, col2, col3 FROM my_table")

可以设置auto_train = True

4. 询问

vn.ask("What are the top 10 customers by sales?")

它包含下列几个函数:

vn.generate_sql
vn.run_sql
vn.generate_plotly_code
vn.get_plotly_figure

visualize=False

5. 启用服务

参考https://github.com/vanna-ai/vanna-flask,将LLM、embedding、vectorStore都改造成自己的代码。
首先是LLM,改造框架为:

from vanna.base import VannaBase
class MyLLM(VannaBase):def __init__(self,config=None):VannaBase.__init__(self, config=config)...def system_message(self, message: str) -> any:return {"role": "system", "content": message}def user_message(self, message: str) -> any:return {"role": "user", "content": message}def assistant_message(self, message: str) -> any:return {"role": "assistant", "content": message}def submit_prompt(self, prompt, **kwargs) -> str:...

然后是embedding,需要定义encode_documents和encode_queries两个函数,例如:

class BgeM3:def __init__(self, url):self.url = urldef encode_documents(self, docs):....def encode_queries(self, queries):....

接下来是vectorStore,我们使用milvus,它会自动调用config中的embedding_function,我们把它定义成上面的BegM3即可:

class MyVanna(Milvus_VectorStore, QwenLLM):def __init__(self, config=None):Milvus_VectorStore.__init__(self, config=config)QwenLLM.__init__(self, config=config)vn = MyVanna(config={'milvus_client': MilvusClient(...),'embedding_function':BgeM3(...)})

然后定义连接的数据库,可以换成任意的其他数据库:

def run_sql(sql: str) -> pd.DataFrame:cnx = mysql.connector.connect(...)cursor = cnx.cursor()cursor.execute(sql)result = cursor.fetchall()columns = cursor.column_namesdf = pd.DataFrame(result, columns=columns)return dfvn.run_sql = run_sql
vn.run_sql_is_set = True 

接着执行python app.py即可启用服务,访问localhost:5000可以打开页面:
在这里插入图片描述
同时也可以调用接口:

import requests
response = requests.get(url+'/api/v0/get_training_data',headers={'Content-Type':'application/json'})
response.json()

所有可用的接口清单可以参考app.py。

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

热搜词