题目
问题 3. 求满足以下条件的解 u = u ( x , t ) u = u(x,t) u=u(x,t),并描述其唯一确定的区域:
u t t − u x x = 0 ; u_{tt} - u_{xx} = 0; utt−uxx=0;
u ∣ t = x 2 / 2 = x 3 ; u|_{t=x^2/2} = x^3; u∣t=x2/2=x3;
u t ∣ t = x 2 / 2 = 2 x . u_t|_{t=x^2/2} = 2x. ut∣t=x2/2=2x.
解答
步骤 1: 求解波动方程
给定的偏微分方程为波动方程:
u t t − u x x = 0. u_{tt} - u_{xx} = 0. utt−uxx=0.
其通解为:
u ( x , t ) = f ( x − t ) + g ( x + t ) , u(x,t) = f(x - t) + g(x + t), u(x,t)=f(x−t)+g(x+t),
其中 f f f 和 g g g 是任意函数,由初始条件确定。
步骤 2: 应用初始条件
初始条件在曲线 t = x 2 2 t = \frac{x^2}{2} t=2x2 上给出:
- u ( x , x 2 2 ) = x 3 u(x, \frac{x^2}{2}) = x^3 u(x,2x2)=x3,
- u t ( x , x 2 2 ) = 2 x u_t(x, \frac{x^2}{2}) = 2x ut(x,2x2)=2x.
代入通解:
- 设 τ ( x ) = x 2 2 \tau(x) = \frac{x^2}{2} τ(x)=2x2,则:
u ( x , τ ( x ) ) = f ( x − τ ( x ) ) + g ( x + τ ( x ) ) = x 3 . ( 1 ) u(x, \tau(x)) = f\left(x - \tau(x)\right) + g\left(x + \tau(x)\right) = x^3. \quad (1) u(x,τ(x))=f(x−τ(x))+g(x+τ(x))=x3.(1) - 计算 u t u_t ut:
u t = ∂ ∂ t [ f ( x − t ) + g ( x + t ) ] = − f ′ ( x − t ) + g ′ ( x + t ) , u_t = \frac{\partial}{\partial t} [f(x - t) + g(x + t)] = -f'(x - t) + g'(x + t), ut=∂t∂[f(x−t)+g(x+t)]=−f′(x−t)+g′(x+t),
在 t = τ ( x ) t = \tau(x) t=τ(x) 上:
u t ( x , τ ( x ) ) = − f ′ ( x − τ ( x ) ) + g ′ ( x + τ ( x ) ) = 2 x . ( 2 ) u_t(x, \tau(x)) = -f'\left(x - \tau(x)\right) + g'\left(x + \tau(x)\right) = 2x. \quad (2) ut(x,τ(x))=−f′(x−τ(x))+g′(x+τ(x))=2x.(2)
定义新变量:
a = x − τ ( x ) = x − x 2 2 , b = x + τ ( x ) = x + x 2 2 . a = x - \tau(x) = x - \frac{x^2}{2}, \quad b = x + \tau(x) = x + \frac{x^2}{2}. a=x−τ(x)=x−2x2,b=x+τ(x)=x+2x2.
则方程 (1) 和 (2) 变为:
f ( a ) + g ( b ) = x 3 , ( 1 ′ ) f(a) + g(b) = x^3, \quad (1') f(a)+g(b)=x3,(1′)
− f ′ ( a ) + g ′ ( b ) = 2 x . ( 2 ′ ) -f'(a) + g'(b) = 2x. \quad (2') −f′(a)+g′(b)=2x.(2′)
注意到 a a a 和 b b b 满足关系:
b − a = x 2 , a + b = 2 x . b - a = x^2, \quad a + b = 2x. b−a=x2,a+b=2x.
设 s = a + b = 2 x s = a + b = 2x s=a+b=2x,则 x = s 2 x = \frac{s}{2} x=2s,且 b − a = ( s 2 ) 2 = s 2 4 b - a = \left(\frac{s}{2}\right)^2 = \frac{s^2}{4} b−a=(2s)2=4s2。代入方程 (1’) 和 (2’):
f ( a ) + g ( b ) = ( s 2 ) 3 = s 3 8 , ( 1 ′ ′ ) f(a) + g(b) = \left(\frac{s}{2}\right)^3 = \frac{s^3}{8}, \quad (1'') f(a)+g(b)=(2s)3=8s3,(1′′)
− f ′ ( a ) + g ′ ( b ) = s . ( 2 ′ ′ ) -f'(a) + g'(b) = s. \quad (2'') −f′(a)+g′(b)=s.(2′′)
参数化初始曲线:设 s s s 为参数,则:
a ( s ) = s 2 − s 2 8 , b ( s ) = s 2 + s 2 8 . a(s) = \frac{s}{2} - \frac{s^2}{8}, \quad b(s) = \frac{s}{2} + \frac{s^2}{8}. a(s)=2s−8s2,b(s)=2s+8s2.
对 (1’’) 关于 s s s 求导:
d d s [ f ( a ) + g ( b ) ] = f ′ ( a ) d a d s + g ′ ( b ) d b d s = d d s ( s 3 8 ) = 3 s 2 8 , \frac{d}{ds} [f(a) + g(b)] = f'(a) \frac{da}{ds} + g'(b) \frac{db}{ds} = \frac{d}{ds} \left( \frac{s^3}{8} \right) = \frac{3s^2}{8}, dsd[f(a)+g(b)]=f′(a)dsda+g′(b)dsdb=dsd(8s3)=83s2,
其中:
d a d s = 1 2 − s 4 , d b d s = 1 2 + s 4 . \frac{da}{ds} = \frac{1}{2} - \frac{s}{4}, \quad \frac{db}{ds} = \frac{1}{2} + \frac{s}{4}. dsda=21−4s,dsdb=21+4s.
所以:
f ′ ( a ) ( 1 2 − s 4 ) + g ′ ( b ) ( 1 2 + s 4 ) = 3 s 2 8 . ( A ) f'(a) \left( \frac{1}{2} - \frac{s}{4} \right) + g'(b) \left( \frac{1}{2} + \frac{s}{4} \right) = \frac{3s^2}{8}. \quad (A) f′(a)(21−4s)+g′(b)(21+4s)=83s2.(A)
方程 (2’’) 为:
− f ′ ( a ) + g ′ ( b ) = s . ( B ) -f'(a) + g'(b) = s. \quad (B) −f′(a)+g′(b)=s.(B)
令 A = f ′ ( a ) A = f'(a) A=f′(a), B = g ′ ( b ) B = g'(b) B=g′(b),则 (A) 和 (B) 为:
( 1 2 − s 4 ) A + ( 1 2 + s 4 ) B = 3 s 2 8 , ( A ) \left( \frac{1}{2} - \frac{s}{4} \right) A + \left( \frac{1}{2} + \frac{s}{4} \right) B = \frac{3s^2}{8}, \quad (A) (21−4s)A+(21+4s)B=83s2,(A)
− A + B = s . ( B ) -A + B = s. \quad (B) −A+B=s.(B)
由 (B) 得 B = A + s B = A + s B=A+s,代入 (A):
( 1 2 − s 4 ) A + ( 1 2 + s 4 ) ( A + s ) = 3 s 2 8 . \left( \frac{1}{2} - \frac{s}{4} \right) A + \left( \frac{1}{2} + \frac{s}{4} \right) (A + s) = \frac{3s^2}{8}. (21−4s)A+(21+4s)(A+s)=83s2.
展开并简化:
A + s 2 + s 2 4 = 3 s 2 8 , A + \frac{s}{2} + \frac{s^2}{4} = \frac{3s^2}{8}, A+2s+4s2=83s2,
A = 3 s 2 8 − s 2 − s 2 4 = s 2 8 − s 2 . A = \frac{3s^2}{8} - \frac{s}{2} - \frac{s^2}{4} = \frac{s^2}{8} - \frac{s}{2}. A=83s2−2s−4s2=8s2−2s.
所以:
f ′ ( a ) = s 2 8 − s 2 . f'(a) = \frac{s^2}{8} - \frac{s}{2}. f′(a)=8s2−2s.
由 a = s 2 − s 2 8 a = \frac{s}{2} - \frac{s^2}{8} a=2s−8s2,解得:
s 2 − 4 s = − 8 a ⟹ f ′ ( a ) = 1 8 ( − 8 a ) = − a . s^2 - 4s = -8a \implies f'(a) = \frac{1}{8} (-8a) = -a. s2−4s=−8a⟹f′(a)=81(−8a)=−a.
类似地:
g ′ ( b ) = A + s = ( s 2 8 − s 2 ) + s = s 2 8 + s 2 , g'(b) = A + s = \left( \frac{s^2}{8} - \frac{s}{2} \right) + s = \frac{s^2}{8} + \frac{s}{2}, g′(b)=A+s=(8s2−2s)+s=8s2+2s,
由 b = s 2 + s 2 8 b = \frac{s}{2} + \frac{s^2}{8} b=2s+8s2,解得:
s 2 + 4 s = 8 b ⟹ g ′ ( b ) = 1 8 ( 8 b ) = b . s^2 + 4s = 8b \implies g'(b) = \frac{1}{8} (8b) = b. s2+4s=8b⟹g′(b)=81(8b)=b.
积分得:
f ( a ) = − 1 2 a 2 + c 1 , g ( b ) = 1 2 b 2 + c 2 , f(a) = -\frac{1}{2} a^2 + c_1, \quad g(b) = \frac{1}{2} b^2 + c_2, f(a)=−21a2+c1,g(b)=21b2+c2,
其中 c 1 , c 2 c_1, c_2 c1,c2 为常数。通解为:
u ( x , t ) = f ( x − t ) + g ( x + t ) = − 1 2 ( x − t ) 2 + c 1 + 1 2 ( x + t ) 2 + c 2 . u(x,t) = f(x - t) + g(x + t) = -\frac{1}{2} (x - t)^2 + c_1 + \frac{1}{2} (x + t)^2 + c_2. u(x,t)=f(x−t)+g(x+t)=−21(x−t)2+c1+21(x+t)2+c2.
简化:
u ( x , t ) = − 1 2 ( x 2 − 2 x t + t 2 ) + 1 2 ( x 2 + 2 x t + t 2 ) + C = 2 x t + C , u(x,t) = -\frac{1}{2} (x^2 - 2xt + t^2) + \frac{1}{2} (x^2 + 2xt + t^2) + C = 2xt + C, u(x,t)=−21(x2−2xt+t2)+21(x2+2xt+t2)+C=2xt+C,
其中 C = c 1 + c 2 C = c_1 + c_2 C=c1+c2.
步骤 3: 确定常数 C C C
代入初始条件 u ( x , x 2 2 ) = x 3 u(x, \frac{x^2}{2}) = x^3 u(x,2x2)=x3:
2 x ⋅ x 2 2 + C = x 3 + C = x 3 ⟹ C = 0. 2x \cdot \frac{x^2}{2} + C = x^3 + C = x^3 \implies C = 0. 2x⋅2x2+C=x3+C=x3⟹C=0.
验证另一初始条件 u t ( x , x 2 2 ) = 2 x u_t(x, \frac{x^2}{2}) = 2x ut(x,2x2)=2x:
u t = ∂ ∂ t ( 2 x t ) = 2 x , u_t = \frac{\partial}{\partial t} (2xt) = 2x, ut=∂t∂(2xt)=2x,
在 t = x 2 2 t = \frac{x^2}{2} t=2x2 上为 2 x 2x 2x,符合。因此解为:
u ( x , t ) = 2 x t . u(x,t) = 2xt. u(x,t)=2xt.
步骤 4: 描述唯一确定的区域
解 u ( x , t ) = 2 x t u(x,t) = 2xt u(x,t)=2xt 处处满足波动方程和初始条件。然而,解的唯一性取决于初始曲线 t = x 2 2 t = \frac{x^2}{2} t=2x2 的特征性质。该曲线在 x = ± 1 x = \pm 1 x=±1 处为特征曲线(因为特征线斜率为 ± 1 \pm 1 ±1,而曲线斜率 d t d x = x = ± 1 \frac{dt}{dx} = x = \pm 1 dxdt=x=±1 当 x = ± 1 x = \pm 1 x=±1)。
通过分析函数 f f f 和 g g g 的定义域:
- f ( a ) f(a) f(a) 在初始曲线上定义于 a = x − x 2 2 ≤ 1 2 a = x - \frac{x^2}{2} \leq \frac{1}{2} a=x−2x2≤21(最大值在 x = 1 x = 1 x=1),
- g ( b ) g(b) g(b) 定义于 b = x + x 2 2 ≥ − 1 2 b = x + \frac{x^2}{2} \geq -\frac{1}{2} b=x+2x2≥−21(最小值在 x = − 1 x = -1 x=−1)。
因此,解唯一确定的区域为:
x − t ≤ 1 2 和 x + t ≥ − 1 2 . x - t \leq \frac{1}{2} \quad \text{和} \quad x + t \geq -\frac{1}{2}. x−t≤21和x+t≥−21.
该区域由特征线 x − t = 1 2 x - t = \frac{1}{2} x−t=21 和 x + t = − 1 2 x + t = -\frac{1}{2} x+t=−21 界定,包含边界。在此区域内,解由初始数据唯一确定;区域外,解可能不唯一(例如,可修改 f f f 或 g g g 在未定义部分的值,仍满足初始条件)。
初始曲线 t = x 2 2 t = \frac{x^2}{2} t=2x2 完全位于此区域内(当 x = 1 x = 1 x=1, x − t = 0.5 x - t = 0.5 x−t=0.5; 当 x = − 1 x = -1 x=−1, x + t = − 0.5 x + t = -0.5 x+t=−0.5)。
答案
解为:
u ( x , t ) = 2 x t . u(x,t) = 2xt. u(x,t)=2xt.
唯一确定的区域为:
{ ( x , t ) ∈ R 2 ∣ x − t ≤ 1 2 , x + t ≥ − 1 2 } . \left\{ (x,t) \in \mathbb{R}^2 \mid x - t \leq \frac{1}{2}, \, x + t \geq -\frac{1}{2} \right\}. {(x,t)∈R2∣x−t≤21,x+t≥−21}.
该区域在 x t xt xt-平面上是由直线 x − t = 1 2 x - t = \frac{1}{2} x−t=21 和 x + t = − 1 2 x + t = -\frac{1}{2} x+t=−21 围成的半无限区域(包含边界),如下图所示(阴影部分):
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-FWMEH5Gh-1750337072206)(https://i.imgur.com/5eXhZJp.png)]
- 边界交点: ( x , t ) = ( 0 , − 0.5 ) (x,t) = (0, -0.5) (x,t)=(0,−0.5)(当 x − t = 0.5 x - t = 0.5 x−t=0.5 和 x + t = − 0.5 x + t = -0.5 x+t=−0.5 联立解得)。
- 初始曲线 t = x 2 / 2 t = x^2/2 t=x2/2(抛物线)完全包含在区域内。