欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 健康 > 美食 > pytorch torch.isclose函数介绍

pytorch torch.isclose函数介绍

2025/6/25 10:49:27 来源:https://blog.csdn.net/qq_27390023/article/details/144985863  浏览:    关键词:pytorch torch.isclose函数介绍

torch.isclose 是 PyTorch 中用于比较两个张量是否“近似相等”的函数。它主要用于判断两个张量的对应元素在数值上是否接近(考虑了浮点数精度的可能误差)。


函数定义

torch.isclose(input, other, rtol=1e-05, atol=1e-08, equal_nan=False)

参数说明

  1. input (Tensor):

    • 第一个张量。
  2. other (Tensor):

    • 第二个张量,和 input 的形状必须相同,或者可以通过广播机制与 input 对齐。
  3. rtol (float, 可选,默认值:1e-05):

    • 相对容忍误差(relative tolerance)。比较时的相对误差阈值,定义了两个值相对距离的可接受范围。
  4. atol (float, 可选,默认值:1e-08):

    • 绝对容忍误差(absolute tolerance)。比较时的绝对误差阈值,定义了两个值绝对距离的可接受范围。
  5. equal_nan (bool, 可选,默认值:False):

    • 是否将 NaN 视为“接近”。
    • 如果为 True,则两个 NaN 会被认为是相等的。

返回值

  • 返回一个与 input 和 other 形状相同的布尔张量。
  • 每个元素表示 input 和 other 对应位置的元素是否“近似相等”。

比较规则

两个元素 aa 和 bb 被认为是“近似相等”的条件是:

  • |a - b|: 表示 input 和 other 对应元素之间的绝对差值。
  • atol: 绝对误差阈值。
  • rtol: 相对误差阈值。

常见用途

  • 比较浮点数是否相等(避免浮点数精度误差)。
  • 检查数值计算中张量的结果是否一致或接近。
  • 判断两个张量之间的元素是否在某个容忍范围内。

示例

import torch# 创建两个浮点张量
a = torch.tensor([1.0, 2.0, 3.0001])
b = torch.tensor([1.0, 2.0, 3.0])# 默认参数下比较
result = torch.isclose(a, b)
print(result)  # tensor([True, True, False])# 调整容忍误差
result = torch.isclose(a, b, rtol=1e-03, atol=1e-05)
print(result)  # tensor([True, True, True])# 比较含有 NaN 的张量
a = torch.tensor([1.0, float('nan')])
b = torch.tensor([1.0, float('nan')])# 默认不认为 NaN 相等
print(torch.isclose(a, b))  # tensor([ True, False])# 允许 NaN 相等
print(torch.isclose(a, b, equal_nan=True))  # tensor([ True, True])

注意事项

  • rtol 和 atol 的选择

    • 如果数值范围较大,可以增加 rtol
    • 如果数值精度要求较高,可以减小 atol
  • NaN 的比较

    • 默认情况下,torch.isclose 认为 NaN 是不相等的,除非 equal_nan=True

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

热搜词