欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 新闻 > 国际 > 一键浪漫的回忆:微软开源的修复工具!!【送源码】

一键浪漫的回忆:微软开源的修复工具!!【送源码】

2026/2/2 14:57:51 来源:https://blog.csdn.net/java_121388/article/details/141002207  浏览:    关键词:一键浪漫的回忆:微软开源的修复工具!!【送源码】

项目介绍

“Bringing-Old-Photos-Back-to-Life”是一款由微软开发的创新软件解决方案,它利用人工智能技术来修复和增强老旧照片的质量。这款工具可以解决老旧照片中常见的问题,如褪色、低分辨率以及物理损坏(如划痕和撕裂)。通过采用先进的图像处理技术,“Bringing-Old-Photos-Back-to-Life”能够显著改善这些照片的整体外观,使其看起来几乎就像是用现代设备拍摄的一样。

特点

它可以自动为黑白照片上色、修正颜色褪变、提高清晰度和锐利度,甚至修复轻微的物理损坏。修复后的结果不仅视觉上令人赏心悦目,而且高度逼真,这对于保存历史和个人记忆来说是一款不可或缺的工具。

开源成就

目前已经取得14.8K Star

主要功能

  • 上色与颜色校正: 提升褪色或黑白照片的颜色。

  • 清晰度与锐利度提升: 增加图片的分辨率和锐利度。

  • 损害修复: 修复照片上的划痕、撕裂及其他物理损伤。

  • 高分辨率支持: 能够处理高分辨率图片以实现细节修复。

安装使用指南

  1. 下载代码库

    • 首先,需要下载项目的代码库到本地环境。

      git clone https://github.com/microsoft/Bringing-Old-Photos-Back-to-Life.git
      
  2. 安装同步批量归一化库

    • 进入models/networks/目录,并下载同步批量归一化PyTorch库。

      cd Bringing-Old-Photos-Back-to-Life/Face_Enhancement/models/networks/
      git clone https://github.com/vacancy/Synchronized-BatchNorm-PyTorch.git
      cp -rf Synchronized-BatchNorm-PyTorch/sync_batchnorm .
      
    • 同样操作需要在Global/detection_models/目录下重复。

      cd ../../../
      cd Global/detection_models/
      git clone https://github.com/vacancy/Synchronized-BatchNorm-PyTorch.git
      cp -rf Synchronized-BatchNorm-PyTorch/sync_batchnorm .
      cd ../../..
      
  3. 下载人脸检测预训练模型

    • Face_Detection/目录下下载人脸检测预训练模型。

      cd Face_Detection/
      wget http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
      bzip2 -d shape_predictor_68_face_landmarks.dat.bz2
      cd ..
      
  4. 下载并解压预训练模型

    • Face_Enhancement/Global/目录下下载并解压预训练模型。

      cd Face_Enhancement/
      wget https://github.com/microsoft/Bringing-Old-Photos-Back-to-Life/releases/download/v1.0/face_checkpoints.zip
      unzip face_checkpoints.zip
      cd ../
      cd Global/
      wget https://github.com/microsoft/Bringing-Old-Photos-Back-to-Life/releases/download/v1.0/global_checkpoints.zip
      unzip global_checkpoints.zip
      cd ../
      
  5. 安装依赖

    • 在项目根目录下安装所需的依赖库。

      pip install -r requirements.txt
      
  6. 如何使用:

    • 对于没有划痕的图片:
      python run.py --input_folder [测试图片文件夹路径] \--output_folder [输出路径] \--GPU 0
      
      对于有划痕的图片:
      python run.py --input_folder [测试图片文件夹路径] \--output_folder [输出路径] \--GPU 0 \--with_scratch
      
      对于带有划痕的高分辨率图片:
      python run.py --input_folder [测试图片文件夹路径] \--output_folder [输出路径] \--GPU 0 \--with_scratch \--HR
      

    • 注意:请将 [测试图片文件夹路径] 和 [输出路径] 替换为你系统中的适当路径。如果你希望使用CPU运行,则可以将GPU选项设置为 -1。    

  7. GUI运行

  • 如果命令行使用不方便,还可以用官方提供的客户端程序,傻瓜式操作,直接运行GUI.py 文件

这个项目让我们意识到,技术的力量不仅仅在于创造新事物,更在于它能够帮助我们修复、保存和珍视那些无法复制的过去。无论是家庭相册中的老照片,还是历史档案中的珍贵影像,Bringing-Old-Photos-Back-to-Life都赋予了它们新的生命。

  ——EOF——

福利:

扫码回复【酒店】可免费领取酒店管理系统源码

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

热搜词