欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 新闻 > 焦点 > Fisher准则例题——给定类内散度矩阵和类样本均值

Fisher准则例题——给定类内散度矩阵和类样本均值

2025/7/30 2:32:17 来源:https://blog.csdn.net/u013600306/article/details/148382857  浏览:    关键词:Fisher准则例题——给定类内散度矩阵和类样本均值

设有两类样本,两类样本的类内散度矩阵分别为

S 1 = ( 1 1 / 2 1 / 2 1 ) , S 2 = ( 1 − 1 / 2 − 1 / 2 1 ) S_1 = \begin{pmatrix} 1 & 1/2 \\ 1/2 & 1 \end{pmatrix}, \quad S_2 = \begin{pmatrix} 1 & -1/2 \\ -1/2 & 1 \end{pmatrix} S1=(11/21/21),S2=(11/21/21)

各类样本均值分别为

μ 1 = ( 2 , 0 ) ⊤ 和  μ 2 = ( 2 , 2 ) ⊤ \mu_1 = (2, 0)^\top \text{ 和 } \mu_2 = (2, 2)^\top μ1=(2,0)  μ2=(2,2)

利用 Fisher 准则求其决策面方程(假定分类阈值点为均值),并求新样本 ( 1 , 1 ) ⊤ (1, 1)^\top (1,1) 属于哪类?


解:

S w = S 1 + S 2 = ( 2 0 0 2 ) S_{\bm w} = S_1 + S_2 = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} Sw=S1+S2=(2002)

S w − 1 = ( 1 / 2 0 0 1 / 2 ) S_{\bm w}^{-1} = \begin{pmatrix} 1/2 & 0 \\ 0 & 1/2 \end{pmatrix} Sw1=(1/2001/2)

w = S w − 1 ( μ 1 − μ 2 ) = ( 0 , − 1 ) ⊤ {\bm w} = S_{\bm w}^{-1} (\mu_1 - \mu_2) = (0, -1)^\top w=Sw1(μ1μ2)=(0,1)

y 0 ∗ = w ⊤ μ 1 + μ 2 2 = ( 0 , − 1 ) ( 2 , 1 ) ⊤ = − 1 y_0^* = {\bm w}^\top \frac{\mu_1 + \mu_2}{2} = (0, -1)(2, 1)^\top = -1 y0=w2μ1+μ2=(0,1)(2,1)=1

w ⊤ ( 1 , 1 ) ⊤ = − 1 = y 0 ∗ {\bm w}^\top (1, 1)^\top = -1 = y_0^* w(1,1)=1=y0

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

热搜词