欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 新闻 > 会展 > 论文略读:If Multi-Agent Debate is the Answer, What is the Question?

论文略读:If Multi-Agent Debate is the Answer, What is the Question?

2025/5/24 9:40:12 来源:https://blog.csdn.net/qq_40206371/article/details/148177918  浏览:    关键词:论文略读:If Multi-Agent Debate is the Answer, What is the Question?

202502 arxiv

1 intro

  • 多智能体辩论(Multi-Agent Debate, MAD):通过让多个智能体在大模型推理时展开多轮辩论,可提升生成内容的事实准确性和推理质量
    • 但论文认为,目前多智能体辩论在大多数情况下不敌简单的单智能体方法 Chain-Of-Thought
      • 在 36 种实验配置(覆盖 9 个常见数据集与 4 种大模型)中,MAD 的胜率不足 20%
  • ——>论文提出Heter-MAD,通过简单引入异构模型智能体,无需修改现有 MAD 框架即可稳定提升性能(最高达 30%)

2 主要结论

  • 选取了 
    • 5 种具有代表性的 MAD 框架
      • SoM、MP、EoT、ChatEval 和 AgentVerse
    • 9 个涵盖通用知识、数学推理和编程能力的基准数据集
    •  4 个基础模型
      • GPT-4o-mini、Claude-3.5-haiku、Llama3.1-8b/70b
    • 两种baseline
      • Chain-of-Thought;self-consistency
    • 评估指标
      • 性能、效率和鲁棒性

  • 在 36 个测试场景中,MAD 方法仅在不到 20% 的情况下优于CoT,更别说SC了

  • MAD 方法消耗了更多的 token,但未能带来稳定的性能提升        

  • 增加智能体数量或辩论轮次并未显著改善 MAD 的表现

3 异构MAD效果

  • 论文认为,人类协作成功的关键在于个体多样性
    • 但现有 MAD 方法大多使用同一模型的多个实例进行评测,忽视了模型多样性可能带来的性能提升
  • ——>提出了 Heter-MAD 方法:在MAD 框架中,每个 LLM 智能体随机从异构模型池中选择模型生成答案
    • 无需改变现有 MAD 框架结构,却能显著且稳定地提升性能

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

热搜词