欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 新闻 > 焦点 > ”一维前缀和“算法原理及模板

”一维前缀和“算法原理及模板

2025/5/17 21:51:09 来源:https://blog.csdn.net/czt230610/article/details/148012923  浏览:    关键词:”一维前缀和“算法原理及模板

前缀和,就是通过一种方法来求出数组中某个连续区间的元素的和的办法。我们通常先预处理出来一个前缀和数组,然后把数组中进行元素填充后再进行后续使用。

我们通过一道模板题或许能更加理解其意思。 

现在的问题就是:如果我们用暴力枚举来记录每次l与r之间的和,那么肯定是会超时的(时间复杂度O(N*q)),我们要另辟蹊径。我们用一下上面的前缀和算法。

假设我们原有的数组为arr,现在我们要另创建一个数组dp。这个dp数组的每一个元素dp[i]记录着arr[i]及之前的元素之和。

注意,我们这里的arr和dp中的i都是以1开始记录而不是0,稍后我们解释一下原因,我们先把arr[0]和dp[0]都看成0。dp中的元素计算公式为:
dp[i]=dp[i-1]+arr[i];

利用这个公式,我们也可以把dp数组进行初始化。接下来就是如何使用,

假设我们要求l-r的和,只需要用dp[r]-dp[l-1]即可。

通过这个公式我们就可以说明为什么下标需要从1开始了,如果l为0,也就是想求从最左到r,那么公式里就是dp[r]-dp[-1]。越界是万万不可的。所以我们要把arr和dp的0位置空出来并标记为0即可(0并不影响求和)。这种方法我们就成功把时间复杂度变成了o(q)+o(n)。

我们把题解写一下,(代码过程基本就是模板)

#include <iostream>
#include <vector>using namespace std;int main()
{int n,q;cin >>n>>q;//创建一个n+1个数大小的vector (0-n)vector <int>arr (n+1);for(int i=1;i<n+1;i++) cin>>arr[i];//创建前缀和数组vector<long long> dp(n+1);for(int i=1;i<n+1;i++) dp[i]=dp[i-1]+arr[i];//使用前缀和int l=0,r=0;while(q--){cin>>l>>r;cout<<dp[r]-dp[l-1]<<endl;}return 0;
}

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

热搜词