我们有一份统计数据,这个数据是关于手机号消耗流量的情况,需求统计每一个手机号耗费的总上行流量、总下行流量、总流量。
13812345678 50 200
13678901234 30 150
15923456789 40 180
18856789012 60 250
17734567890 35 160
(一)需求介绍
需求统计每一个手机号耗费的总上行流量、总下行流量、总流量
(二)需求分析
在map阶段读一行数据,切分字段,抽取手机号,上行流量和下行流量。以手机号为key,bean对象为value输出。
一个手机号有多行数据。
按行读出手机号,上行流量和下行流量。
但是,map,reducer函数都需要我们使用键值对的数据,所以我们需要一个类来描述。
k2: 手机号码
v2: phoneFlowBean对象
reduce阶段将每个手机号对应的phoneFlowBean对象封装的信息。
(三)编写流量统计的Bean对象
import org.apache.hadoop.io.Writable;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
//hadoop 序列化
//三个属性:手机号,上行流量,下行流量
public class FlowBean implements Writable {
private String phone;
private Long upFlow;
private Long downFlow;
public FlowBean(String phone, Long upFlow,Long downFlow){
this.phone = phone;
this.upFlow = upFlow;
this.downFlow = downFlow;
}
//定义get/set方法
public String getPhone() {
return phone;
}
public void setPhone(String phone) {
this.phone = phone;
}
public long getUpFlow(){
return upFlow;
}
public void setUpFlow(Long upFlow) {
this.upFlow = upFlow;
}
public Long getDownFlow() {
return downFlow;
}
public void setDownFlow(Long downFlow) {
this.downFlow = downFlow;
}
//定义无参构造
public FlowBean(){}
//定义一个获取流量的方法
public Long getTotalFlow() {
return upFlow + downFlow;
}
@Override
public void write(DataOutput dataOutput) throws IOException {
dataOutput.writeUTF(phone);
dataOutput.writeLong(upFlow);
dataOutput.writeLong(downFlow);
}
@Override
public void readFields(DataInput dataInput) throws IOException {
phone = dataInput.readUTF();
upFlow = dataInput.readLong();
downFlow = dataInput.readLong();
}
}
(四)编写Mapper类
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
//1.继承Mappper
//2.重写map函数
public class FlowMapeer extends Mapper<LongWritable, Text, Text,FlowBean> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
//1.获取一行数据,使用空格拆分
//手机号就是第一个元素
//上行流量就是第二个元素
//下行流量就是第三个元素
String[] split = value.toString().split("");
String phone = split[0];
Long upFlow = Long.parseLong(split[1]);
Long downFlow = Long.parseLong(split[2]);
//2.封装对象
FlowBean flowBean = new FlowBean(phone,upFlow, downFlow);
// 3.写入手机号为key,值就是这个对象
context.write(new Text(phone),flowBean);
}
}
(五)编写Reducer类
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
//1.继承 Reducer
//2.重写reduce函数
public class FlowReduce extends Reducer<Text,FlowBean,Text,Text> {
@Override
protected void reduce(Text key,Iterable<FlowBean> values, Context context)throws IOException, InterruptedException {
//1.遍历集合,取出每一个元素,计算机上行流量和下行流量的汇总
Long upFlowSum = 0L;
Long downFlowSum = 0L;
for (FlowBean flowBean : values) {
upFlowSum += flowBean.getUpFlow();
downFlowSum += flowBean.getDownFlow();
}
//2.计算总的汇总
long sumFlowSum = upFlowSum + downFlowSum;
String flowDesc = String.format("总的上行流量:%d,总的下行流量是:%d,总流量是:%d",upFlowSum, downFlowSum,sumFlowSum);
context.write(key,new Text(flowDesc));
}
}
(六)编写Driver驱动类
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
//提交job的类,一共做7件事
public class FlowDriver {
public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {
//1.获取配置,得到job对象
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
// 2.设置jar包路径
job.setJarByClass(FlowDriver.class);
// 3.关联Mapper和Reduce
job.setMapperClass(FlowMapeer.class);
job.setReducerClass(FlowReduce.class);
// 4.设置Mapper和Reduce的输出类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(FlowBean.class);
//5.设置reducer的输出类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
//6.设置输入和输出路径
FileInputFormat.setInputPaths(job, new Path("data"));
FileOutputFormat.setOutputPath(job, new Path("output"));
//7.提交job,根据返回值设置程序退出code
boolean result = job.waitForCompletion(true);
System.exit(result ? 0 :1);
}
}
测试使用
运行程序,查看效果。
通过本堂课的学习,我们学习了序列化在实际场景中的应用,