欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 教育 > 培训 > chromadb向量数据库使用 (1)

chromadb向量数据库使用 (1)

2025/5/11 9:41:29 来源:https://blog.csdn.net/qq_41472205/article/details/145906949  浏览:    关键词:chromadb向量数据库使用 (1)

目录

    • 完整代码
    • 代码解释

完整代码

import chromadb
chroma_client = chromadb.Client()
collection = chroma_client.create_collection(name="my_collection")
collection.add(documents=["This is a document about pineapple","This is a document about oranges"],ids=["id1", "id2"]
)
results = collection.query(query_texts=["This is a query document about hawaii"], n_results=2 
)
print(results)
{'ids': [['id1', 'id2']], 'embeddings': None, 'documents': [['This is a document about pineapple', 'This is a document about oranges']], 'uris': None, 'data': None, 'metadatas': [[None, None]], 'distances': [[1.0404009819030762, 1.2430799007415771]], 'included': [<IncludeEnum.distances: 'distances'>, <IncludeEnum.documents: 'documents'>, <IncludeEnum.metadatas: 'metadatas'>]}
import chromadb
chroma_client = chromadb.Client()collection = chroma_client.get_or_create_collection(name="my_collection")collection.upsert(documents=["This is a document about pineapple","This is a document about oranges"],ids=["id1", "id2"]
)results = collection.query(query_texts=["..."], n_results=2 
)print(results)
{'ids': [['id2', 'id1']], 'embeddings': None, 'documents': [['This is a document about oranges', 'This is a document about pineapple']], 'uris': None, 'data': None, 'metadatas': [[None, None]], 'distances': [[1.8110723495483398, 1.846815824508667]], 'included': [<IncludeEnum.distances: 'distances'>, <IncludeEnum.documents: 'documents'>, <IncludeEnum.metadatas: 'metadatas'>]}

代码解释

以下是逐行代码的中文解释:

# 导入ChromaDB客户端库
import chromadb# 创建ChromaDB客户端实例(默认使用内存存储)
chroma_client = chromadb.Client()# 创建名为"my_collection"的集合(类似数据库表)
collection = chroma_client.create_collection(name="my_collection")# 向集合添加文档数据
collection.add(documents=["This is a document about pineapple",  # 文档1:关于菠萝"This is a document about oranges"     # 文档2:关于橙子],ids=["id1", "id2"]  # 为每个文档指定唯一ID
)# 执行相似性查询
results = collection.query(query_texts=["This is a query document about hawaii"],  # 查询文本(夏威夷相关)n_results=2  # 返回最相似的2个结果
)# 打印查询结果(包含相似文档及其距离分数)
print(results)
# 获取或创建集合(如果已存在则直接获取)
collection = chroma_client.get_or_create_collection(name="my_collection")# 使用upsert方法添加/更新文档(存在则更新,不存在则插入)
collection.upsert(documents=["This is a document about pineapple",  # 文档内容与之前相同"This is a document about oranges"],ids=["id1", "id2"]  # 使用相同ID
)# 执行空查询(使用"..."作为占位符)
results = collection.query(query_texts=["..."],  # 无效查询文本示例n_results=2
)# 打印不同查询条件的结果对比
print(results)

关键点解析:

  1. 存储方式:默认使用内存存储,重启后数据会丢失
  2. 集合操作:
    • create_collection() 严格创建新集合
    • get_or_create_collection() 更安全的获取方式
  3. 文档操作:
    • add() 单纯添加新文档
    • upsert() 支持更新已有文档(基于ID)
  4. 查询结果:
    • distances越小表示相似度越高
    • 无效查询可能返回随机/全部结果
    • 结果排序基于相似度得分

典型使用场景:构建简单的文本相似性搜索系统,适用于知识库检索、FAQ问答等场景。建议后续添加文本向量化模型(如Sentence-BERT)来提升搜索质量。

参考链接:https://docs.trychroma.com/docs/overview/getting-started

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

热搜词