欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 文旅 > 明星 > Python处理JSON

Python处理JSON

2025/5/8 17:21:10 来源:https://blog.csdn.net/mohen_777/article/details/140664550  浏览:    关键词:Python处理JSON

Python处理JSON

####概念
序列化(Serialization):将对象的状态信息转换为可以存储或可以通过网络传输的过程,传输的格式可以是JSON、XML等。反序列化就是从存储区域(JSON,XML)读取反序列化对象的状态,重新创建该对象。

JSON(JavaScript Object Notation):一种轻量级数据交换格式,相对于XML而言更简单,也易于阅读和编写,机器也方便解析和生成,Json是JavaScript中的一个子集。

Python2.6开始加入了JSON模块,无需另外下载,Python的Json模块序列化与反序列化的过程分别是 encodingdecoding

encoding:把一个Python对象编码转换成Json字符串
decoding:把Json格式字符串解码转换成Python对象
对于简单数据类型(string、unicode、int、float、list、tuple、dict),可以直接处理。

#####json.dumps方法对简单数据类型encoding:

import json
data = [{'a':"A",'b':(2,4),'c':3.0}]  #list对象
print "DATA:",repr(data)data_string = json.dumps(data)
print "JSON:",data_string

输出:

DATA: [{'a':'A','c':3.0,'b':(2,4)}] #python的dict类型的数据是没有顺序存储的
JSON: [{"a":"A","c":3.0,"b":[2,4]}]  

JSON的输出结果与DATA很相似,除了一些微妙的变化,如python的元组类型变成了Json的数组,Python到Json的编码转换规则是:
在这里插入图片描述

#####json.loads方法处理简单数据类型的decoding(解码)转换

import json
data = [{'a':"A",'b':(2,4),'c':3.0}]  #list对象data_string = json.dumps(data)
print "ENCODED:",data_stringdecoded = json.loads(data_string)
print "DECODED:",decodedprint "ORIGINAL:",type(data[0]['b'])
print "DECODED:",type(decoded[0]['b'])

输出:

ENCODED: [{"a": "A", "c": 3.0, "b": [2, 4]}]
DECODED: [{u'a': u'A', u'c': 3.0, u'b': [2, 4]}]
ORIGINAL: <type 'tuple'>
DECODED: <type 'list'>

解码过程中,json的数组最终转换成了python的list,而不是最初的tuple类型,Json到Python的解码规则是:

在这里插入图片描述

####json的人文关怀
编码后的json格式字符串紧凑的输出,而且也没有顺序,因此dumps方法提供了一些可选的参数,让输出的格式提高可读性,如sort_keys是告诉编码器按照字典排序(a到z)输出。

import jsondata = [ { 'a':'A', 'b':(2, 4), 'c':3.0 } ]
print 'DATA:', repr(data)unsorted = json.dumps(data)
print 'JSON:', json.dumps(data)
print 'SORT:', json.dumps(data, sort_keys=True)

输出:

DATA: [{'a': 'A', 'c': 3.0, 'b': (2, 4)}]
JSON: [{"a": "A", "c": 3.0, "b": [2, 4]}]
SORT: [{"a": "A", "b": [2, 4], "c": 3.0}

indent参数根据数据格式缩进显示,读起来更加清晰:

import jsondata = [ { 'a':'A', 'b':(2, 4), 'c':3.0 } ]
print 'DATA:', repr(data)print 'NORMAL:', json.dumps(data, sort_keys=True)
print 'INDENT:', json.dumps(data, sort_keys=True, indent=2)

输出:

DATA: [{'a': 'A', 'c': 3.0, 'b': (2, 4)}]
NORMAL: [{"a": "A", "b": [2, 4], "c": 3.0}]
INDENT: [{"a": "A","b": [2,4],"c": 3.0}
]

separators参数的作用是去掉,,:后面的空格,从上面的输出结果都能看到", :"后面都有个空格,这都是为了美化输出结果的作用,但是在我们传输数据的过程中,越精简越好,冗余的东西全部去掉,因此就可以加上separators参数:

import jsondata = [ { 'a':'A', 'b':(2, 4), 'c':3.0 } ]
print 'DATA:', repr(data)
print 'repr(data)             :', len(repr(data))
print 'dumps(data)            :', len(json.dumps(data))
print 'dumps(data, indent=2)  :', len(json.dumps(data, indent=2))
print 'dumps(data, separators):', len(json.dumps(data, separators=(',',':')))

输出:

DATA: [{'a': 'A', 'c': 3.0, 'b': (2, 4)}]
repr(data)             : 35
dumps(data)            : 35
dumps(data, indent=2)  : 76
dumps(data, separators): 29

skipkeys参数,在encoding过程中,dict对象的key只可以是string对象,如果是其他类型,那么在编码过程中就会抛出ValueError的异常。skipkeys可以跳过那些非string对象当作key的处理.

import jsondata= [ { 'a':'A', 'b':(2, 4), 'c':3.0, ('d',):'D tuple' } ]try:print json.dumps(data)
except (TypeError, ValueError) as err:print 'ERROR:', err
print 
print json.dumps(data, skipkeys=True)

输出:

ERROR: keys must be a string[{"a": "A", "c": 3.0, "b": [2, 4]}]

####让json支持自定义数据类型
以上例子都是基于python的built-in类型的,对于自定义类型的数据结构,json模块默认是没法处理的,会抛出异常:TypeError xx is not JSON serializable,此时你需要自定义一个转换函数:

import json  class MyObj(object):def __init__(self, s):self.s = sdef __repr__(self):return '<MyObj(%s)>' % self.sobj = .MyObj('helloworld')try:print json.dumps(obj)
except TypeError, err:print 'ERROR:', err#转换函数
def convert_to_builtin_type(obj):print 'default(', repr(obj), ')'# 把MyObj对象转换成dict类型的对象d = { '__class__':obj.__class__.__name__, '__module__':obj.__module__,}d.update(obj.__dict__)return dprint json.dumps(obj, default=convert_to_builtin_type)

输出:

ERROR: <MyObj(helloworld)> is not JSON serializable
default( <MyObj(helloworld)> )
{"s": "hellworld", "__module__": "MyObj", "__class__": "__main__"} 
#注意:这里的class和module根据你代码的所在文件位置不同而不同

相反,如果要把json decode 成python对象,同样也需要自定转换函数,传递给json.loads方法的object_hook参数:

#jsontest.pyimport jsonclass MyObj(object):def __init__(self,s):self.s = sdef __repr__(self):return "<MyObj(%s)>" % self.sdef dict_to_object(d):if '__class__' in d:class_name = d.pop('__class__')module_name = d.pop('__module__')module = __import__(module_name)print "MODULE:",moduleclass_ = getattr(module,class_name)print "CLASS",class_args = dict((key.encode('ascii'),value) for key,value in d.items())print 'INSTANCE ARGS:',argsinst = class_(**args)else:inst = dreturn instencoded_object = '[{"s":"helloworld","__module__":"jsontest","__class__":"MyObj"}]'myobj_instance = json.loads(encoded_object,object_hook=dict_to_object)
print myobj_instance

输出:

MODULE: <module 'jsontest' from 'E:\Users\liuzhijun\workspace\python\jsontest.py'>
CLASS <class 'jsontest.MyObj'>
INSTANCE ARGS: {'s': u'helloworld'}
[<MyObj(helloworld)>]
MODULE: <module 'jsontest' from 'E:\Users\liuzhijun\workspace\python\jsontest.py'>
CLASS <class 'jsontest.MyObj'>
INSTANCE ARGS: {'s': u'helloworld'}
[<MyObj(helloworld)>]

####使用Encoder与Decoder类实现json编码的转换

JSONEncoder有一个迭代接口iterencode(data),返回一系列编码的数据,他的好处是可以方便的把逐个数据写到文件或网络流中,而不需要一次性就把数据读入内存.

import jsonencoder = json.JSONEncoder()
data = [ { 'a':'A', 'b':(2, 4), 'c':3.0 } ]for part in encoder.iterencode(data):print 'PART:', part

输出:

PART: [
PART: {
PART: "a"
PART: :
PART: "A"
PART: ,
PART: "c"
PART: :
PART: 3.0
PART: ,
PART: "b"
PART: :
PART: [2
PART: , 4
PART: ]
PART: }
PART: ]

encode方法等价于''.join(encoder.iterencode(),而且预先会做些错误检查(比如非字符串作为dict的key),对于自定义的对象,我们只需从些JSONEncoder的default()方法,其实现方式与上面提及的函数convet_to_builtin_type()是类似的。

import json
import json_myobjclass MyObj(object):def __init__(self,s):self.s = sdef __repr__(self):return "<MyObj(%s)>" % self.sclass MyEncoder(json.JSONEncoder):def default(self, obj):print 'default(', repr(obj), ')'# Convert objects to a dictionary of their representationd = { '__class__':obj.__class__.__name__, '__module__':obj.__module__,}d.update(obj.__dict__)return dobj = json_myobj.MyObj('helloworld')
print obj
print MyEncoder().encode(obj)

输出:

<MyObj(internal data)>
default( <MyObj(internal data)> )
{"s": "helloworld", "__module__": "Myobj", "__class__": "MyObj"}

从json对Python对象的转换:

class MyDecoder(json.JSONDecoder):def __init__(self):json.JSONDecoder.__init__(self, object_hook=self.dict_to_object)def dict_to_object(self, d):if '__class__' in d:class_name = d.pop('__class__')module_name = d.pop('__module__')module = __import__(module_name)print 'MODULE:', moduleclass_ = getattr(module, class_name)print 'CLASS:', class_args = dict( (key.encode('ascii'), value) for key, value in d.items())print 'INSTANCE ARGS:', argsinst = class_(**args)else:inst = dreturn instencoded_object = '[{"s": "helloworld", "__module__": "jsontest", "__class__": "MyObj"}]'myobj_instance = MyDecoder().decode(encoded_object)
print myobj_instance

输出:

MODULE: <module 'jsontest' from 'E:\Users\liuzhijun\workspace\python\jsontest.py'>
CLASS: <class 'jsontest.MyObj'>
INSTANCE ARGS: {'s': u'helloworld'}
[<MyObj(helloworld)>]

####json格式字符串写入到文件流中
上面的例子都是在内存中操作的,如果对于大数据,把他编码到一个类文件(file-like)中更合适,load()dump()方法就可以实现这样的功能。

import json
import tempfiledata = [ { 'a':'A', 'b':(2, 4), 'c':3.0 } ]f = tempfile.NamedTemporaryFile(mode='w+')
json.dump(data, f)
f.flush()print open(f.name, 'r').read()

输出:

[{"a": "A", "c": 3.0, "b": [2, 4]}]

类似的:

import json
import tempfilef = tempfile.NamedTemporaryFile(mode='w+')
f.write('[{"a": "A", "c": 3.0, "b": [2, 4]}]')
f.flush()
f.seek(0)print json.load(f)

输出:

[{u'a': u'A', u'c': 3.0, u'b': [2, 4]}]

参考:
http://docs.python.org/2/library/json.html
http://www.cnblogs.com/coser/archive/2011/12/14/2287739.html
http://pymotw.com/2/json/

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

热搜词