欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 健康 > 美食 > 求解插值多项式及其余项表达式

求解插值多项式及其余项表达式

2025/6/9 3:16:09 来源:https://blog.csdn.net/weixin_73404807/article/details/145694157  浏览:    关键词:求解插值多项式及其余项表达式

求满足 P ( x j ) = f ( x j ) P(x_j) = f(x_j) P(xj)=f(xj) ( j = 0 , 1 , 2 j=0,1,2 j=0,1,2) 及 P ′ ( x 1 ) = f ′ ( x 1 ) P'(x_1) = f'(x_1) P(x1)=f(x1) 的插值多项式及其余项表达式。

解:

由给定条件,可确定次数不超过3的插值多项式。此多项式通过点 ( x 0 , f ( x 0 ) ) , ( x 1 , f ( x 1 ) ) (x_0,f(x_0)),(x_1,f(x_1)) (x0,f(x0)),(x1,f(x1)) ( x 2 , f ( x 2 ) ) (x_2,f(x_2)) (x2,f(x2)),故形式为
P ( x ) = f ( x 0 ) + f [ x 0 , x 1 ] ( x − x 0 ) + f [ x 0 , x 1 , x 2 ] ( x − x 0 ) ( x − x 1 ) + A ( x − x 0 ) ( x − x 1 ) ( x − x 2 ) P(x) = f(x_0) + f[x_0,x_1](x-x_0) + f[x_0,x_1,x_2](x-x_0)(x-x_1)+ A(x-x_0)(x-x_1)(x-x_2) P(x)=f(x0)+f[x0,x1](xx0)+f[x0,x1,x2](xx0)(xx1)+A(xx0)(xx1)(xx2),

其中A为待定常数,可由条件 P ′ ( x 1 ) = f ′ ( x 1 ) P'(x_1) = f'(x_1) P(x1)=f(x1)确定

A = f ′ ( x 1 ) − f [ x 0 , x 1 ] − ( x 1 − x 0 ) f [ x 0 , x 1 , x 2 ] ( x 1 − x 0 ) ( x 1 − x 2 ) A=\frac{f'(x_1)-f[x_0,x_1]-(x_1-x_0)f[x_0,x_1,x_2]}{(x_1-x_0)(x_1-x_2)} A=(x1x0)(x1x2)f(x1)f[x0,x1](x1x0)f[x0,x1,x2]

为求出余项 R ( x ) = f ( x ) − P ( x ) R(x)=f(x)-P(x) R(x)=f(x)P(x)的表达式,设
R ( x ) = f ( x ) − P ( x ) = K ( x ) ( x − x 0 ) 2 ( x − x 1 ) 2 ( x − x 2 ) R(x) = f(x)-P(x) = K(x)(x-x_0)^2(x-x_1)^2(x-x_2) R(x)=f(x)P(x)=K(x)(xx0)2(xx1)2(xx2)

其中 K ( x ) K(x) K(x)为待定函数。

构造
φ ( t ) = f ( t ) − P ( t ) − K ( x ) ( t − x 0 ) 2 ( t − x 1 ) 2 ( t − x 2 ) \varphi(t) = f(t)-P(t)-K(x)(t-x_0)^2(t-x_1)^2(t-x_2) φ(t)=f(t)P(t)K(x)(tx0)2(tx1)2(tx2)

显然 φ ( x j ) = 0 ( j = 0 , 1 , 2 ) \varphi(x_j)=0(j=0,1,2) φ(xj)=0(j=0,1,2),且 φ ′ ( x 1 ) = 0 , φ ( x ) = 0 \varphi'(x_1)=0,\varphi(x)=0 φ(x1)=0,φ(x)=0,故 φ ( t ) \varphi(t) φ(t) ( a , b ) (a,b) (a,b)内有五个零点(重根算两个)。

由Rolle 定理, φ ( 4 ) ( t ) \varphi^{(4)}(t) φ(4)(t) ( a , b ) (a,b) (a,b)内至少有一个零点 ξ \xi ξ,故
φ ( 4 ) ( ξ ) = f ( 4 ) ( ξ ) − 4 ! K ( x ) = 0 \varphi^{(4)}(\xi)=f^{(4)}(\xi)-4!K(x)=0 φ(4)(ξ)=f(4)(ξ)4!K(x)=0

于是 K ( x ) = f ( 4 ) ( ξ ) / 4 ! K(x)=f^{(4)}(\xi)/4! K(x)=f(4)(ξ)/4!,余项表达式为
R ( x ) = f ( 4 ) ( ξ ) ( x − x 0 ) ( x − x 1 ) 2 ( x − x 2 ) / 4 ! R(x)=f^{(4)}(\xi)(x-x_0)(x-x_1)^2(x-x_2)/4! R(x)=f(4)(ξ)(xx0)(xx1)2(xx2)/4!
其中 ξ \xi ξ位于 x 0 , x 1 , x 2 x_0,x_1,x_2 x0,x1,x2 x x x所界定的范围内.

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

热搜词