欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 健康 > 养生 > 四边形不等式优化

四边形不等式优化

2025/9/21 9:54:32 来源:https://blog.csdn.net/Brilliant_Sky/article/details/139882981  浏览:    关键词:四边形不等式优化

四边形不等式优化

应用于类似以下dp转移方程。
f i = min ⁡ 1 ≤ j ≤ i ( w i , j , f i ) f_{i}=\min_{1\le j\le i}(w_{i,j},f_{i}) fi=1jimin(wi,j,fi)
假设 w i , j w_{i,j} wi,j 可以在 O ( 1 ) O(1) O(1) 的时间内进行计算。

在正常情况下,此状态转移方程的时间复杂度是 O ( n 2 ) O(n^2) O(n2)

对于问题 i i i,我们需要考虑所有的有关决策 j j j,但是当其满足决策单调性时,就可以缩小决策空间,减少时间复杂度。

四边形不等式:

约定:

对于类似 a ≤ b ≤ c ≤ d a\le b\le c\le d abcd 都成立,若二元函数 w i , j w_{i,j} wi,j 满足以下条件
w a , c + w b , d ≤ w a , d + w b , c w_{a,c}+w_{b,d}\le w_{a,d}+w_{b,c} wa,c+wb,dwa,d+wb,c
则称 w i , j w_{i,j} wi,j 满足四边形不等式

特别的,若等号永远成立,则称 w i , j w_{i,j} wi,j四边形恒等式

重点:因为四边形不等式是用来优化时间复杂度的,所以四边形不等式给出了一个决策单调性的充分不必要条件

利用决策单调性,可以使用二分查找,使其查询时间复杂度降低为 O ( N log ⁡ N ) O(N \log N) O(NlogN)

区间包含单调性

w b , c ≤ w a , d w_{b,c}\le w_{a,d} wb,cwa,d,则称 w w w​ 满足区间包含单调性

  • 既包含,又满足决策单调性。

  • 满足四边形不等式的形象化图片。

方程:
$$
w_{l,r+1}-w_{l,r}=a_{r+1}-a_{\lfloor\frac{l+r+1}{2}\rfloor}
\
w_{l+1,r+1}-w_{l+1,r}=a_{r+1}-a_{\lfloor\frac{l+r+2}{2}\rfloor}
\

$$

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com